- 
					 The elevation of the top of a tower from a point on the ground is 45°. On travelling 60 m from the point towards the tower, the elevation of the top becomes 60°. The height of the tower (in metres) is
- 
                        - 30
- 30(3 - √3)
- 30 (3 + √3)
- 30 √3
 
Correct Option: C

AB = tower = h metre
∠ACB = 45°, ∠ADB = 60°
CD = 60 metre] BD = x metre
From ∆ABC,
| tan 45° = | BC | 
| ⇒ 1 = | x + 60 | 
⇒ h = x + 60 ....................(i)
From ∆ABD
| tan 60° = | BD | 
| ⇒ √3 = | x | 
⇒ h = √3x
⇒ h = √3(h - 60)
⇒ √3h - h= 60√3
⇒ h(√3 - 1) = 60√3
| ⇒ h = | = | |||
| √3 - 1 | (√3 - 1)(√3 + 1) | 
= 30√3(√3 + 1)
= 30(3 + √3) metre
 
	