- 
					 The length of the shadow of a vertical tower on level ground increases by 10 metres when the altitude of the sun changes from 45° to 30°. Then the height of the tower is
- 
                        - 5 √3 metre
- 10 (√3 + 1) metre
- 5 (√3 + 1) metre
- 10 √3 metre
 
Correct Option: C

AB = Tower = h metre
∠BDA = 30°
∠ACB = 45°
CD = 10 metre
From ∆ABC,
| tan45° = | BC | 
| ⇒ 1 = | ⇒ h = x | x | 
⇒ √3h = h +10 [∵ h = x ]
⇒ √3h - h = 10
⇒ h( √3 - 1) = 10
| ⇒ h = | = | × | ||||
| √3 - 1 | √3 - 1 | √3 + 1 | 
| = | = 5(√3 + 1) metre | 2 | 
 
	