- 
					 If x cosθ – sinθ = 1, then x² + (1 +x² ) sinq equals
- 
                        - 2
- 1
- - 1
- 0
 
Correct Option: B
x cosθ – sinθ = 1
⇒ x cosθ = 1 + sinθ
| ⇒ x = | + | cos θ | cos θ | 
⇒ x = secθ + tanθ --- (i)
∵ sec²θ – tan²θ = 1
⇒ (secθ + tanθ) (secθ – tanθ) =1
| ⇒ secθ – tanθ = | (ii) | x | 
From equation (i) + (ii),
| 2secθ = x + | = | x | x | 
| ⇒ secθ = | 2x | 
From equation (i) – (ii),
| 2tanθ = x – | = | x | x | 
| ∴ tanθ = | 2x | 
| ∴ sinθ = | secθ | 
| = | × | = | 2x | x² + 1 | x² + 1 | 
∴ Expression = x² – (1 + x² ) sinθ
| = x² - (1 + x²) × | = x² - x² + 1 = 1 | x² + 1 | 
Note : In the original equation x² + (1 + x² ) sinθ has been given that seems incorrect
 
	