- 
					 tan θ + cot θ is equal to 1 - cot θ 1 - tan θ 
- 
                        - 1 – tan θ – cot θ
- 1 + tanθ – cotθ
- 1 – tanθ + cotθ
-  1 + tanθ + cotθ
 
 
Correct Option: D
Expression
| = | + | 1 - cot θ | 1 - tan θ | 
| = | + | {1 - (1 / tan θ) } | 1 - tan θ | 
| = | + | tan θ - 1 | tan θ(1 - tan θ) | 
| = | + | tan θ - 1 | tan θ(tan θ - 1) | 
| = | tan θ (tan θ - 1) | 
| = | tan θ (tan θ - 1) | 
| = | tan θ | 
= tan θ + cot θ + 1
 
	