Mensuration
-  The area of a rhombus is 150 cm². The length of one of its diagonals is 10 cm. The length of the other diagonal is :
- 
                        View Hint View Answer Discuss in Forum Using Rule 12, 
 Let d1, d2 be the diagonals of a rhombus,Area = 1 d1.d2 2 ⇒ 150 = 1 × 10 × d2 2 ⇒ d2 = 150 = 30 cm 5 Correct Option: BUsing Rule 12, 
 Let d1, d2 be the diagonals of a rhombus,Area = 1 d1.d2 2 ⇒ 150 = 1 × 10 × d2 2 ⇒ d2 = 150 = 30 cm 5 
-  The perimeter of a rhombus is 100 cm. If one of its diagonals is 14 cm, then the area of the rhombus is
 
- 
                        View Hint View Answer Discuss in Forum Using Rule 12, 
 Perimeter of rhombus
 = 2 √d1² + d2²
 Where d1 and d2 are diagonals.
 ∴ 2√d1² + d2² = 100
 ⇒ √d1² + d2² = 50
 ⇒ d1² + d2² = 2500
 ⇒ (14)² + d2² = 2500
 ⇒ d2² = 2500 – 196 = 2304
 ∴ d² = √2304 = 48∴ Area of the rhombus = 1 d1² × d2² 2 ∴ Area of the rhombus = 1 14 × 48 = 336 sq.cm 2 Correct Option: CUsing Rule 12, 
 Perimeter of rhombus
 = 2 √d1² + d2²
 Where d1 and d2 are diagonals.
 ∴ 2√d1² + d2² = 100
 ⇒ √d1² + d2² = 50
 ⇒ d1² + d2² = 2500
 ⇒ (14)² + d2² = 2500
 ⇒ d2² = 2500 – 196 = 2304
 ∴ d² = √2304 = 48∴ Area of the rhombus = 1 d1² × d2² 2 ∴ Area of the rhombus = 1 14 × 48 = 336 sq.cm 2 
-  If the measure of one side and one diagonal of a rhombus are 10 cm and 16 cm respectively, then its area (in cm²) is :
 
- 
                        View Hint View Answer Discuss in Forum Using Rule 12, A  
 AB = 10cm,
 AC = 16 cm;
 ⇒ AO = 8 cm
 ∴ BO = √10² - 8²
 = √100 - 64 = √36 = 6 cm
 ∴ BD = 12cm
 Hence,
 Area of rhombus = d1d2= 1 × 16 × 12 = 96cm² 2 Correct Option: CUsing Rule 12, A  
 AB = 10cm,
 AC = 16 cm;
 ⇒ AO = 8 cm
 ∴ BO = √10² - 8²
 = √100 - 64 = √36 = 6 cm
 ∴ BD = 12cm
 Hence,
 Area of rhombus = d1d2= 1 × 16 × 12 = 96cm² 2 
-  The ratio of the length of the parallel sides of a trapezium is 3 : 2. The shortest distance between them is 15 cm. If the area of the trapezium is 450 cm², the sum of the length of the parallel sides is
 
- 
                        View Hint View Answer Discuss in Forum Using Rule 13, Area of the trapezium = 1 (sum of parallel sides) × altitude 2 ⇒ 450 = 1 (3x + 2x) × 15 2 ⇒ 5x = 450 × 2 = 60cm 15 Correct Option: DUsing Rule 13, Area of the trapezium = 1 (sum of parallel sides) × altitude 2 ⇒ 450 = 1 (3x + 2x) × 15 2 ⇒ 5x = 450 × 2 = 60cm 15 
-  The area of an equilateral triangle is 9√3m² . The length (in m) of the median is
 
- 
                        View Hint View Answer Discuss in Forum Using Rule 6,  √3 × side² = 9√3 4 
 ⇒ Side² = 9 × 4 = 36
 ⇒ Side = √36 = 6 metre
 ∴ BD = 3 metre
 AD = √AB² - BD² = √6² - 3²
 = √36 - 9 = √27
 = 3√3 metreCorrect Option: BUsing Rule 6,  √3 × side² = 9√3 4 
 ⇒ Side² = 9 × 4 = 36
 ⇒ Side = √36 = 6 metre
 ∴ BD = 3 metre
 AD = √AB² - BD² = √6² - 3²
 = √36 - 9 = √27
 = 3√3 metre
 
	