Mensuration


  1. A wire of length 44 cm is first bent to form a circle and then rebent to form a square. The difference of the two enclosed areas is









  1. View Hint View Answer Discuss in Forum

    Using Rule 14,
    Circumference of circle
    = 2πr = 44

    ⇒ 2 ×
    22
    × r = 44
    7

    ⇒ r =
    44 × 7
    = 7cm.
    2 × 22

    Area of circle = πr²
    =
    22
    × 7 × 7 = 154 sq.cm.
    7

    Perimeter of square = 44 cm.
    Side of square =
    44
    = 11 cm.
    4

    Area of square = 11 × 11 = 121 sq. cm.
    Difference = 154 – 121 = 33 sq. cm.

    Correct Option: B

    Using Rule 14,
    Circumference of circle
    = 2πr = 44

    ⇒ 2 ×
    22
    × r = 44
    7

    ⇒ r =
    44 × 7
    = 7cm.
    2 × 22

    Area of circle = πr²
    =
    22
    × 7 × 7 = 154 sq.cm.
    7

    Perimeter of square = 44 cm.
    Side of square =
    44
    = 11 cm.
    4

    Area of square = 11 × 11 = 121 sq. cm.
    Difference = 154 – 121 = 33 sq. cm.


  1. A parallelogram has sides 60 m and 40m and one of its diagonals is 80 m long. Its area is









  1. View Hint View Answer Discuss in Forum

    Using Rule 1,

    Semiperimeter of ∆ABC(s) =
    a + b + c
    2

    =
    60 + 40 + 80
    = 90 metre
    2

    ∴ Area of ∆ABC = √s(s - a)(s - b)(s - c)
    = √90 (90 – 60) (90 – 40) (90 – 80)
    = √90 × 30 × 50 × 10
    = √3 × 30 × 30 × 5 × 10 × 10
    = 30 × 10√15
    = 300√15 sq. metre
    ∴ Area ∎ of ABCD
    = 2 × Area of ∆ABC
    = 2 × 300√15
    = 600√15 sq. metre

    Correct Option: B

    Using Rule 1,

    Semiperimeter of ∆ABC(s) =
    a + b + c
    2

    =
    60 + 40 + 80
    = 90 metre
    2

    ∴ Area of ∆ABC = √s(s - a)(s - b)(s - c)
    = √90 (90 – 60) (90 – 40) (90 – 80)
    = √90 × 30 × 50 × 10
    = √3 × 30 × 30 × 5 × 10 × 10
    = 30 × 10√15
    = 300√15 sq. metre
    ∴ Area ∎ of ABCD
    = 2 × Area of ∆ABC
    = 2 × 300√15
    = 600√15 sq. metre



  1. ∠ACB is an angle in the semicircle of diameter AB = 5 and AC : BC = 3 : 4. The area of the triangle ABC is









  1. View Hint View Answer Discuss in Forum


    Angle at the semi-circle is a right angle.
    ∴ ∠ACB = 90°
    AB = 5 cm.
    AC = 3x cm. BC = 4x cm.
    ∴ (3x)² + (4x)² = (5)²
    ⇒ 9x² + 16x² = 25
    ⇒ 25x² = 25
    ⇒ x² = 1
    ⇒ x = 1

    ∴ Area of ∆ABC =
    1
    × BC × AC
    2

    =
    1
    × 4 × 3 = 6 sq.cm.
    2

    Correct Option: D


    Angle at the semi-circle is a right angle.
    ∴ ∠ACB = 90°
    AB = 5 cm.
    AC = 3x cm. BC = 4x cm.
    ∴ (3x)² + (4x)² = (5)²
    ⇒ 9x² + 16x² = 25
    ⇒ 25x² = 25
    ⇒ x² = 1
    ⇒ x = 1

    ∴ Area of ∆ABC =
    1
    × BC × AC
    2

    =
    1
    × 4 × 3 = 6 sq.cm.
    2


  1. If the perimeter of a right-angled triangle is 56 cm and area of the triangle is 84 sq. cm, then the length of the hypotenuse is (in cm)









  1. View Hint View Answer Discuss in Forum


    a + b + c = 56 ...(i)

    1
    ac = 84
    2

    ⇒ ac = 168 sq.cm.
    ∴ b² = a² + c²
    ⇒ b² = (a + c)² – 2ac
    ⇒ b² = (56 – b)² – 2 × 168 [By (i)]
    ⇒ b² = 3136 – 112 b + b² – 336
    ⇒ 112b = 2800
    ⇒ b =
    2800
    = 25cm
    112

    Correct Option: A


    a + b + c = 56 ...(i)

    1
    ac = 84
    2

    ⇒ ac = 168 sq.cm.
    ∴ b² = a² + c²
    ⇒ b² = (a + c)² – 2ac
    ⇒ b² = (56 – b)² – 2 × 168 [By (i)]
    ⇒ b² = 3136 – 112 b + b² – 336
    ⇒ 112b = 2800
    ⇒ b =
    2800
    = 25cm
    112



  1. The length and perimeter of a rectangle are in the ratio 5:18. Then length and breadth will be in the ratio









  1. View Hint View Answer Discuss in Forum

    l
    =
    5
    l
    =
    5
    2(l + b)18l + b9

    l + b
    =
    9
    l + b
    - 1 =
    9
    - 1
    l5l5

    b
    =
    4
    l5

    ⇒ l : b = 5 : 4

    Correct Option: C

    l
    =
    5
    l
    =
    5
    2(l + b)18l + b9

    l + b
    =
    9
    l + b
    - 1 =
    9
    - 1
    l5l5

    b
    =
    4
    l5

    ⇒ l : b = 5 : 4