Mensuration
-  A wire of length 44 cm is first bent to form a circle and then rebent to form a square. The difference of the two enclosed areas is
 
- 
                        View Hint View Answer Discuss in Forum Using Rule 14, 
 Circumference of circle
 = 2πr = 44⇒ 2 × 22 × r = 44 7 ⇒ r = 44 × 7 = 7cm. 2 × 22 
 Area of circle = πr²= 22 × 7 × 7 = 154 sq.cm. 7 
 Perimeter of square = 44 cm.Side of square = 44 = 11 cm. 4 
 Area of square = 11 × 11 = 121 sq. cm.
 Difference = 154 – 121 = 33 sq. cm.Correct Option: BUsing Rule 14, 
 Circumference of circle
 = 2πr = 44⇒ 2 × 22 × r = 44 7 ⇒ r = 44 × 7 = 7cm. 2 × 22 
 Area of circle = πr²= 22 × 7 × 7 = 154 sq.cm. 7 
 Perimeter of square = 44 cm.Side of square = 44 = 11 cm. 4 
 Area of square = 11 × 11 = 121 sq. cm.
 Difference = 154 – 121 = 33 sq. cm.
-  A parallelogram has sides 60 m and 40m and one of its diagonals is 80 m long. Its area is
 
- 
                        View Hint View Answer Discuss in Forum Using Rule 1,  Semiperimeter of ∆ABC(s) = a + b + c 2 = 60 + 40 + 80 = 90 metre 2 
 ∴ Area of ∆ABC = √s(s - a)(s - b)(s - c)
 = √90 (90 – 60) (90 – 40) (90 – 80)
 = √90 × 30 × 50 × 10
 = √3 × 30 × 30 × 5 × 10 × 10
 = 30 × 10√15
 = 300√15 sq. metre
 ∴ Area ∎ of ABCD
 = 2 × Area of ∆ABC
 = 2 × 300√15
 = 600√15 sq. metreCorrect Option: BUsing Rule 1,  Semiperimeter of ∆ABC(s) = a + b + c 2 = 60 + 40 + 80 = 90 metre 2 
 ∴ Area of ∆ABC = √s(s - a)(s - b)(s - c)
 = √90 (90 – 60) (90 – 40) (90 – 80)
 = √90 × 30 × 50 × 10
 = √3 × 30 × 30 × 5 × 10 × 10
 = 30 × 10√15
 = 300√15 sq. metre
 ∴ Area ∎ of ABCD
 = 2 × Area of ∆ABC
 = 2 × 300√15
 = 600√15 sq. metre
-  ∠ACB is an angle in the semicircle of diameter AB = 5 and AC : BC = 3 : 4. The area of the triangle ABC is
 
- 
                        View Hint View Answer Discuss in Forum  
 Angle at the semi-circle is a right angle.
 ∴ ∠ACB = 90°
 AB = 5 cm.
 AC = 3x cm. BC = 4x cm.
 ∴ (3x)² + (4x)² = (5)²
 ⇒ 9x² + 16x² = 25
 ⇒ 25x² = 25
 ⇒ x² = 1
 ⇒ x = 1∴ Area of ∆ABC = 1 × BC × AC 2 = 1 × 4 × 3 = 6 sq.cm. 2 Correct Option: D 
 Angle at the semi-circle is a right angle.
 ∴ ∠ACB = 90°
 AB = 5 cm.
 AC = 3x cm. BC = 4x cm.
 ∴ (3x)² + (4x)² = (5)²
 ⇒ 9x² + 16x² = 25
 ⇒ 25x² = 25
 ⇒ x² = 1
 ⇒ x = 1∴ Area of ∆ABC = 1 × BC × AC 2 = 1 × 4 × 3 = 6 sq.cm. 2 
-  If the perimeter of a right-angled triangle is 56 cm and area of the triangle is 84 sq. cm, then the length of the hypotenuse is (in cm)
 
- 
                        View Hint View Answer Discuss in Forum  
 a + b + c = 56 ...(i)1 ac = 84 2 
 ⇒ ac = 168 sq.cm.
 ∴ b² = a² + c²
 ⇒ b² = (a + c)² – 2ac
 ⇒ b² = (56 – b)² – 2 × 168 [By (i)]
 ⇒ b² = 3136 – 112 b + b² – 336
 ⇒ 112b = 2800⇒ b = 2800 = 25cm 112 Correct Option: A 
 a + b + c = 56 ...(i)1 ac = 84 2 
 ⇒ ac = 168 sq.cm.
 ∴ b² = a² + c²
 ⇒ b² = (a + c)² – 2ac
 ⇒ b² = (56 – b)² – 2 × 168 [By (i)]
 ⇒ b² = 3136 – 112 b + b² – 336
 ⇒ 112b = 2800⇒ b = 2800 = 25cm 112 
-  The length and perimeter of a rectangle are in the ratio 5:18. Then length and breadth will be in the ratio
 
- 
                        View Hint View Answer Discuss in Forum l = 5 ⇒ l = 5 2(l + b) 18 l + b 9 ⇒ l + b = 9 ⇒ l + b - 1 = 9 - 1 l 5 l 5 ⇒ b = 4 l 5 
 ⇒ l : b = 5 : 4Correct Option: Cl = 5 ⇒ l = 5 2(l + b) 18 l + b 9 ⇒ l + b = 9 ⇒ l + b - 1 = 9 - 1 l 5 l 5 ⇒ b = 4 l 5 
 ⇒ l : b = 5 : 4
 
	