Plane Geometry
-  In ∆ ABC, AD ⊥ BC and AD² = BD.DC. The measure of ⊥BAC is:
- 
                        View Hint View Answer Discuss in Forum According to question , we draw a figure triangle ABC  
 In right angled ∆ ABD and ∆ ADC,
 AB² = AD² + BD² and, AC² = AD² + DC²
 On adding, we get
 AB² + AC² = 2AD² + BD² + CD²
 ⇒ AB² + AC² = 2BD × CD + BD² + CD²
 [∵ AD² = BD × CD]Correct Option: CAccording to question , we draw a figure triangle ABC  
 In right angled ∆ ABD and ∆ ADC,
 AB² = AD² + BD² and, AC² = AD² + DC²
 On adding, we get
 AB² + AC² = 2AD² + BD² + CD²
 ⇒ AB² + AC² = 2BD × CD + BD² + CD²
 [∵ AD² = BD × CD]
 ⇒ AB² + AC² = (BD + CD)² = BC²
 ∆ ∠BAC = 90°
-  ⊥A of ∆ ABC is a right angle. AD is perpendicular on BC. If BC = 14 cm and BD = 5 cm, then measure of AD is :
- 
                        View Hint View Answer Discuss in Forum  
 In ∆ ABC and ∆ DAC,
 ∠ADC = ∠BAC , ∠C = ∠C
 By AA – similarity criterion,
 ∆ ABC ~ ∆ DAC∴ AB = BC = AC DA AC DC ⇒ CB = AC CA CD 
 ⇒ CA² = CB × CD
 = BC (BC – BD)
 = 14 × (14 – 5) = 14 × 9
 = 126 sq. cm.
 ∴ From ∆ ADC
 CA² = AD² + C’D²
 Correct Option: C 
 In ∆ ABC and ∆ DAC,
 ∠ADC = ∠BAC , ∠C = ∠C
 By AA – similarity criterion,
 ∆ ABC ~ ∆ DAC∴ AB = BC = AC DA AC DC ⇒ CB = AC CA CD 
 ⇒ CA² = CB × CD
 = BC (BC – BD)
 = 14 × (14 – 5) = 14 × 9
 = 126 sq. cm.
 ∴ From ∆ ADC
 CA² = AD² + C’D²
 ⇒ 126 = AD² + 9²
 ⇒ AD² = 126 – 81 = 45
 ⇒ AD = √45 = 3√5cm.
-  In ∆ ABC, ∠B = 90°, AB = 8 cm and BC = 15 cm, then sinC = ?
- 
                        View Hint View Answer Discuss in Forum On the basis of question we draw a figure of triangle ABC ,  
 Given that , ∠B = 90°, AB = 8 cm and BC = 15 cm
 ∴ AC = √AB² + BC²
 AC = √8² + 15²
 AC = √64 + 225
 AC = √289 = 17 cm.Correct Option: BOn the basis of question we draw a figure of triangle ABC ,  
 Given that , ∠B = 90°, AB = 8 cm and BC = 15 cm
 ∴ AC = √AB² + BC²
 AC = √8² + 15²
 AC = √64 + 225
 AC = √289 = 17 cm.∴ sin c = AB = 8 AC 17 
-  In ∆ ABC, AB = BC = k, AC = √2k, then ∆ ABC is a :
- 
                        View Hint View Answer Discuss in Forum According to question , 
 AB = BC = k, AC = √2k
 Now , AB² + BC² = k² + k² = 2k² = AC²Correct Option: BAccording to question , 
 AB = BC = k, AC = √2k
 Now , AB² + BC² = k² + k² = 2k² = AC²
 ∴ ∆ ABC is a right angled triangle.
-  The sides of a right triangle ABC are a, b and c, where c is the hypotenuse. What will be the radius of the in circle of this triangle?
- 
                        View Hint View Answer Discuss in Forum As per the given in question , we draw a figure right-angled triangle ACB  
 In radius = r units
 Area of (∆OAC + ∆OBC + ∆OAB) = Area of ∆ABC⇒ 1 br + 1 ar + 1 cr = 1 ab 2 2 2 2 
 r (a + b + c) = ab⇒ r = ab . . . . . (i) a + b + c 
 In right angled triangle ∆ABC,
 a² + b² = c²
 ⇒ (a + b)² – 2ab = c²
 ⇒ (a + b)² – c² = 2ab
 ⇒ (a + b + c) (a + b – c) = 2ab
 ∴ From equation (i),r = ab a + b + c 
 Correct Option: BAs per the given in question , we draw a figure right-angled triangle ACB  
 In radius = r units
 Area of (∆OAC + ∆OBC + ∆OAB) = Area of ∆ABC⇒ 1 br + 1 ar + 1 cr = 1 ab 2 2 2 2 
 r (a + b + c) = ab⇒ r = ab . . . . . (i) a + b + c 
 In right angled triangle ∆ABC,
 a² + b² = c²
 ⇒ (a + b)² – 2ab = c²
 ⇒ (a + b)² – c² = 2ab
 ⇒ (a + b + c) (a + b – c) = 2ab
 ∴ From equation (i),r = ab a + b + c r = (a + b + c) (a + b - c) 2(a + b + c) r = a + b - c 2 
 
	