Plane Geometry


  1. In ∆ABC, ∠A = 90°, BP and CQ are two medians. Then the value of
    BP² + CQ²
    BC²









  1. View Hint View Answer Discuss in Forum

    On the basis of given in question , we draw a figure triangle ABC ,

    In ∆ AQC,
    ∠A = 90°
    ⇒ CQ² = AC² + QA²
    ⇒ 4CQ² = 4AC² + 4QA²
    ⇒ 4CQ² = 4AC² + (2QA)²
    ⇒ 4CQ² = 4AC² + AB²
    [∵AB = 2QA]
    In ∆ BPA,
    BP² = BA² + AP²
    ⇒ 4BP² = 4BA² + 4AP²
    ⇒ 4BP² = 4BA² + AC²
    [∵ AC = 2AP]
    ∴ 4 CQ² + 4 BP² = 4 AC² + AB² + 4 AB² + AC²
    ⇒ 4(CQ² + BP²) = 5(AC² + AB²) = 5 BC²

    Correct Option: B

    On the basis of given in question , we draw a figure triangle ABC ,

    In ∆ AQC,
    ∠A = 90°
    ⇒ CQ² = AC² + QA²
    ⇒ 4CQ² = 4AC² + 4QA²
    ⇒ 4CQ² = 4AC² + (2QA)²
    ⇒ 4CQ² = 4AC² + AB²
    [∵AB = 2QA]
    In ∆ BPA,
    BP² = BA² + AP²
    ⇒ 4BP² = 4BA² + 4AP²
    ⇒ 4BP² = 4BA² + AC²
    [∵ AC = 2AP]
    ∴ 4 CQ² + 4 BP² = 4 AC² + AB² + 4 AB² + AC²
    ⇒ 4(CQ² + BP²) = 5(AC² + AB²) = 5 BC²

    BP² + CQ²
    =
    5
    BC²4


  1. In ∆ ABC, AB = AC, O is a point on BC such that BO = CO and OD is perpendicular to AB and OE is perpendicular to AC. If ∠BOD = 30° then measure of ∠AOE is









  1. View Hint View Answer Discuss in Forum

    As per the given in question , we draw a figure of triangle ABC

    ∠BDO = 90°
    ∠BOD = 30°
    ∴ ∠DBO = 60°
    ∠B = ∠C = 60°
    ∴ ∠EOC = 30°
    AO is bisector of BC.

    Correct Option: B

    As per the given in question , we draw a figure of triangle ABC

    ∠BDO = 90°
    ∠BOD = 30°
    ∴ ∠DBO = 60°
    ∠B = ∠C = 60°
    ∴ ∠EOC = 30°
    AO is bisector of BC.
    ∴ ∠DOE = 120°
    ∴ ∠AOE = ∠AOD = 60°



  1. O is the orthocentre of ∆ ABC. Then ∠BOC + ∠BAC is equal to









  1. View Hint View Answer Discuss in Forum

    Firstly , We draw a figure in which O is the orthocentre of ∆ ABC ,

    ∴ ∠BOC = 180° – ∠A

    Correct Option: C

    Firstly , We draw a figure in which O is the orthocentre of ∆ ABC ,

    ∴ ∠BOC = 180° – ∠A
    ⇒ ∠BOC + ∠BAC = 180°


  1. In a triangle ABC, if ∠A + ∠C = 140° and ∠A + ∠B = 180°, then ∠A is equal to









  1. View Hint View Answer Discuss in Forum

    Given that , ∠A + ∠C = 140° and ∠A + ∠B = 180°
    In a ∆ ABC,
    We know that , ∠A + ∠B + ∠C = 180°
    ⇒ ∠B + 140° = 180°
    ⇒ ∠B = 180° – 140° = 40°
    ∴ ∠A + 3 ∠B = 180°

    Correct Option: C

    Given that , ∠A + ∠C = 140° and ∠A + ∠B = 180°
    In a ∆ ABC,
    We know that , ∠A + ∠B + ∠C = 180°
    ⇒ ∠B + 140° = 180°
    ⇒ ∠B = 180° – 140° = 40°
    ∴ ∠A + 3 ∠B = 180°
    ⇒ ∠A + 3 × 40° = 180°
    ⇒ ∠A = 180° – 120° = 60°.



  1. In ∆ABC , ∠B = 60° , and ∠C = 40° , AD and AE are respectively the bisector of ∠A and perpendicular on BC. The measure of ∠EAD is :









  1. View Hint View Answer Discuss in Forum

    As per the given in question , we draw a figure triangle ABC

    ∠B + ∠C = 60° + 40° = 100°
    ∴ ∠A = 180° – 100° = 80°
    ∴ ∠BAD = 40°
    In ∆ ABE,
    ∠AEB = 90°

    Correct Option: B

    As per the given in question , we draw a figure triangle ABC

    ∠B + ∠C = 60° + 40° = 100°
    ∴ ∠A = 180° – 100° = 80°
    ∴ ∠BAD = 40°
    In ∆ ABE,
    ∠AEB = 90°
    ∴ ∠BAE = 180° – 90° – 60° = 30°
    ∴ ∠EAD = ∠BAD – ∠BAE = 40° – 30° = 10°