Plane Geometry
-  In ∆ABC, ∠A = 90°, BP and CQ are two medians. Then the value of BP² + CQ² BC² 
- 
                        View Hint View Answer Discuss in Forum On the basis of given in question , we draw a figure triangle ABC ,  
 In ∆ AQC,
 ∠A = 90°
 ⇒ CQ² = AC² + QA²
 ⇒ 4CQ² = 4AC² + 4QA²
 ⇒ 4CQ² = 4AC² + (2QA)²
 ⇒ 4CQ² = 4AC² + AB²
 [∵AB = 2QA]
 In ∆ BPA,
 BP² = BA² + AP²
 ⇒ 4BP² = 4BA² + 4AP²
 ⇒ 4BP² = 4BA² + AC²
 [∵ AC = 2AP]
 ∴ 4 CQ² + 4 BP² = 4 AC² + AB² + 4 AB² + AC²
 ⇒ 4(CQ² + BP²) = 5(AC² + AB²) = 5 BC²Correct Option: BOn the basis of given in question , we draw a figure triangle ABC ,  
 In ∆ AQC,
 ∠A = 90°
 ⇒ CQ² = AC² + QA²
 ⇒ 4CQ² = 4AC² + 4QA²
 ⇒ 4CQ² = 4AC² + (2QA)²
 ⇒ 4CQ² = 4AC² + AB²
 [∵AB = 2QA]
 In ∆ BPA,
 BP² = BA² + AP²
 ⇒ 4BP² = 4BA² + 4AP²
 ⇒ 4BP² = 4BA² + AC²
 [∵ AC = 2AP]
 ∴ 4 CQ² + 4 BP² = 4 AC² + AB² + 4 AB² + AC²
 ⇒ 4(CQ² + BP²) = 5(AC² + AB²) = 5 BC²⇒ BP² + CQ² = 5 BC² 4 
-  In ∆ ABC, AB = AC, O is a point on BC such that BO = CO and OD is perpendicular to AB and OE is perpendicular to AC. If ∠BOD = 30° then measure of ∠AOE is
- 
                        View Hint View Answer Discuss in Forum As per the given in question , we draw a figure of triangle ABC  
 ∠BDO = 90°
 ∠BOD = 30°
 ∴ ∠DBO = 60°
 ∠B = ∠C = 60°
 ∴ ∠EOC = 30°
 AO is bisector of BC.Correct Option: BAs per the given in question , we draw a figure of triangle ABC  
 ∠BDO = 90°
 ∠BOD = 30°
 ∴ ∠DBO = 60°
 ∠B = ∠C = 60°
 ∴ ∠EOC = 30°
 AO is bisector of BC.
 ∴ ∠DOE = 120°
 ∴ ∠AOE = ∠AOD = 60°
-  O is the orthocentre of ∆ ABC. Then ∠BOC + ∠BAC is equal to
- 
                        View Hint View Answer Discuss in Forum Firstly , We draw a figure in which O is the orthocentre of ∆ ABC ,  
 ∴ ∠BOC = 180° – ∠ACorrect Option: CFirstly , We draw a figure in which O is the orthocentre of ∆ ABC ,  
 ∴ ∠BOC = 180° – ∠A
 ⇒ ∠BOC + ∠BAC = 180°
-  In a triangle ABC, if ∠A + ∠C = 140° and ∠A + ∠B = 180°, then ∠A is equal to
- 
                        View Hint View Answer Discuss in Forum Given that , ∠A + ∠C = 140° and ∠A + ∠B = 180° 
 In a ∆ ABC,
 We know that , ∠A + ∠B + ∠C = 180°
 ⇒ ∠B + 140° = 180°
 ⇒ ∠B = 180° – 140° = 40°
 ∴ ∠A + 3 ∠B = 180°Correct Option: CGiven that , ∠A + ∠C = 140° and ∠A + ∠B = 180° 
 In a ∆ ABC,
 We know that , ∠A + ∠B + ∠C = 180°
 ⇒ ∠B + 140° = 180°
 ⇒ ∠B = 180° – 140° = 40°
 ∴ ∠A + 3 ∠B = 180°
 ⇒ ∠A + 3 × 40° = 180°
 ⇒ ∠A = 180° – 120° = 60°.
-  In ∆ABC , ∠B = 60° , and ∠C = 40° , AD and AE are respectively the bisector of ∠A and perpendicular on BC. The measure of ∠EAD is :
- 
                        View Hint View Answer Discuss in Forum As per the given in question , we draw a figure triangle ABC  
 ∠B + ∠C = 60° + 40° = 100°
 ∴ ∠A = 180° – 100° = 80°
 ∴ ∠BAD = 40°
 In ∆ ABE,
 ∠AEB = 90°Correct Option: BAs per the given in question , we draw a figure triangle ABC  
 ∠B + ∠C = 60° + 40° = 100°
 ∴ ∠A = 180° – 100° = 80°
 ∴ ∠BAD = 40°
 In ∆ ABE,
 ∠AEB = 90°
 ∴ ∠BAE = 180° – 90° – 60° = 30°
 ∴ ∠EAD = ∠BAD – ∠BAE = 40° – 30° = 10°
 
	