Plane Geometry
- In the figure, BD and CD are angle bisectors of ∠ ABC and ∠ ACE, respectively. Then ∠ BDC is equal to :
-
View Hint View Answer Discuss in Forum
From above given figure , we have
In ΔABC, ∠ACE = ∠ABC + ∠BAC
Similarly in ΔBCD, ∠BDC = ∠DCE − ∠DBC [Ext. angle prop. of a Δ]But ∠DCE = 1 ∠ACE and 2 ⇒ 1 ∠DBC = 1 ∠ABC 2 2
Correct Option: C
From above given figure , we have
In ΔABC, ∠ACE = ∠ABC + ∠BAC
Similarly in ΔBCD, ∠BDC = ∠DCE − ∠DBC [Ext. angle prop. of a Δ]But ∠DCE = 1 ∠ACE and 2 ⇒ 1 ∠DBC = 1 ∠ABC 2 2
Now ∠BDC = ∠DCE - ∠DBC= 1 (∠ACE - ∠ABC) 2 = 1 (∠ACE + ∠ABC - ∠ACE) 2 ∴ ∠BDC = 1 ∠BAC 2
- In a Δ ABC, the sides AB and AC are produced to P and Q respectively. The bisectors of ∠ OBC and ∠ QCB intersect at a point O. Then ∠ BOC is equal to:
-
View Hint View Answer Discuss in Forum
From given figure , We have ∠B + ∠CBP = 180° (Linear pair)
⇒ 1 ∠B + ∠CBP = 90° 2 ⇒ 1 ∠B + ∠1 = 90° 2 ⇒ ∠1 = 90° - 1 ∠B ............ ( 1 ) 2 Similarly ∠2 = 90° - 1 ∠C 2
Correct Option: B
From given figure , We have ∠B + ∠CBP = 180° (Linear pair)
⇒ 1 ∠B + ∠CBP = 90° 2 ⇒ 1 ∠B + ∠1 = 90° 2 ⇒ ∠1 = 90° - 1 ∠B ............ ( 1 ) 2 Similarly ∠2 = 90° - 1 ∠C 2
In ΔOBC, we have ∠1 + ∠2 + ∠BOC = 180° (Angle sum prop.)⇒ 90° - 1 ∠B + 90° - 1 ∠C + ∠BOC = 180° 2 2 ⇒ ∠BOC = 1 (∠B + ∠C) 2 ∠BOC = 1 (∠A + ∠B + ∠C) - 1 ∠A 2 2 ∠BOC = 1 ×180° - 1 ∠A { ∴ ∠A + ∠B + ∠C = 180° } 2 2 ∠BOC = 90° - 1 ∠A 2
- In a Δ ABC, the bisectors of ∠ B and ∠ C intersect each other at a point O. Then ∠ BOC is equal to :
-
View Hint View Answer Discuss in Forum
In ΔABC, we know that ∠A + ∠B + ∠C = 180°
1 ∠ A + 1 ∠B + 1 ∠C = 90° 2 2 2 1 ∠A + ∠1 + ∠2 = 90° 2 ∠1 + ∠2 = 90° - 1 ∠A 2
Now , In ΔBOC, ∠1 + ∠2 + ∠BOC = 180° ................ ( 1 )90° - 1 ∠A + ∠BOC = 180° { using (i) } 2 ⇒ ∠BOC = 90° + 1 ∠A 2
Correct Option: C
In ΔABC, we know that ∠A + ∠B + ∠C = 180°
1 ∠ A + 1 ∠B + 1 ∠C = 90° 2 2 2 1 ∠A + ∠1 + ∠2 = 90° 2 ∠1 + ∠2 = 90° - 1 ∠A 2
Now , In ΔBOC, ∠1 + ∠2 + ∠BOC = 180° ................ ( 1 )90° - 1 ∠A + ∠BOC = 180° { using (i) } 2 ⇒ ∠BOC = 90° + 1 ∠A 2
- In the fig. XY || AC and XY divides triangular region ABC into two part equal in area.
Then AX is equal to : AB
-
View Hint View Answer Discuss in Forum
From above given figure , we can see that
ar △XBY = ar trap. XYCA (Given)
ar(ΔABC) = 2 ar(ΔXBY)ar(∆XBY) = 1 ar(∆ABC) 2
But ΔXBY ∼ ΔABC (∴ XY || AC)∴ ar(∆XBY) = XB2 ( Areas of similar triangle ) ar(∆ABC) AB2 Correct Option: D
From above given figure , we can see that
ar △XBY = ar trap. XYCA(Given)
ar(ΔABC) = 2 ar(ΔXBY)ar(∆XBY) = 1 ar(∆ABC) 2
But ΔXBY ∼ ΔABC (∴ XY || AC)∴ ar(∆XBY) = XB2 ( Areas of similar triangle ) ar(∆ABC) AB2 ∴ 1 = XB2 2 AB2 ∴ XB = 1 AB √2 AB - AX = 1 { ∴ AB - AX = XB } AB √2 ∴ 1 - AX = 1 AB √2 ⇒ AX = 1 - 1 AB √2 ⇒ AX = √2 - 1 AB √2
- Two poles of ht. a and b meters are p meters apart (b > a). The height of the point of intersection of the lines joining the top of each pole to the foot of the opposite pole is :
-
View Hint View Answer Discuss in Forum
As per given figure , we know that
1 = 1 + 1 h a b
Correct Option: C
As per given figure , we know that
1 = 1 + 1 h a b 1 = a+b h ab ∴ h = ab a+b