Plane Geometry
-  In the figure, BD and CD are angle bisectors of ∠ ABC and ∠ ACE, respectively. Then ∠ BDC is equal to :  
- 
                        View Hint View Answer Discuss in Forum From above given figure , we have 
 In ΔABC, ∠ACE = ∠ABC + ∠BAC
 Similarly in ΔBCD, ∠BDC = ∠DCE − ∠DBC [Ext. angle prop. of a Δ]But ∠DCE = 1 ∠ACE and 2 ⇒ 1 ∠DBC = 1 ∠ABC 2 2 
 Correct Option: CFrom above given figure , we have 
 In ΔABC, ∠ACE = ∠ABC + ∠BAC
 Similarly in ΔBCD, ∠BDC = ∠DCE − ∠DBC [Ext. angle prop. of a Δ]But ∠DCE = 1 ∠ACE and 2 ⇒ 1 ∠DBC = 1 ∠ABC 2 2 
 Now ∠BDC = ∠DCE - ∠DBC= 1 (∠ACE - ∠ABC) 2 = 1 (∠ACE + ∠ABC - ∠ACE) 2 ∴ ∠BDC = 1 ∠BAC 2 
-  In a Δ ABC, the sides AB and AC are produced to P and Q respectively. The bisectors of ∠ OBC and ∠ QCB intersect at a point O. Then ∠ BOC is equal to:
- 
                        View Hint View Answer Discuss in Forum From given figure , We have ∠B + ∠CBP = 180° (Linear pair) ⇒ 1 ∠B + ∠CBP = 90° 2 ⇒ 1 ∠B + ∠1 = 90° 2 ⇒ ∠1 = 90° - 1 ∠B ............ ( 1 ) 2 Similarly ∠2 = 90° - 1 ∠C 2 
   Correct Option: BFrom given figure , We have ∠B + ∠CBP = 180° (Linear pair) ⇒ 1 ∠B + ∠CBP = 90° 2 ⇒ 1 ∠B + ∠1 = 90° 2 ⇒ ∠1 = 90° - 1 ∠B ............ ( 1 ) 2 Similarly ∠2 = 90° - 1 ∠C 2 
 In ΔOBC, we have ∠1 + ∠2 + ∠BOC = 180° (Angle sum prop.)⇒  90° - 1 ∠B  +  90° - 1 ∠C  + ∠BOC = 180° 2 2 ⇒ ∠BOC = 1 (∠B + ∠C) 2 ∠BOC = 1 (∠A + ∠B + ∠C) - 1 ∠A 2 2 ∠BOC = 1 ×180° - 1 ∠A { ∴ ∠A + ∠B + ∠C = 180° } 2 2 ∠BOC = 90° - 1 ∠A 2   
-  In a Δ ABC, the bisectors of ∠ B and ∠ C intersect each other at a point O. Then ∠ BOC is equal to :
- 
                        View Hint View Answer Discuss in Forum In ΔABC, we know that ∠A + ∠B + ∠C = 180° 1 ∠ A + 1 ∠B + 1 ∠C = 90° 2 2 2 1 ∠A + ∠1 + ∠2 = 90° 2 ∠1 + ∠2 = 90° - 1 ∠A 2 
 Now , In ΔBOC, ∠1 + ∠2 + ∠BOC = 180° ................ ( 1 ) 90° - 1 ∠A  + ∠BOC = 180° { using (i) } 2 ⇒ ∠BOC = 90° + 1 ∠A 2   Correct Option: CIn ΔABC, we know that ∠A + ∠B + ∠C = 180° 1 ∠ A + 1 ∠B + 1 ∠C = 90° 2 2 2 1 ∠A + ∠1 + ∠2 = 90° 2 ∠1 + ∠2 = 90° - 1 ∠A 2 
 Now , In ΔBOC, ∠1 + ∠2 + ∠BOC = 180° ................ ( 1 ) 90° - 1 ∠A  + ∠BOC = 180° { using (i) } 2 ⇒ ∠BOC = 90° + 1 ∠A 2   
-  In the fig. XY || AC and XY divides triangular region ABC into two part equal in area.Then AX is equal to : AB   
- 
                        View Hint View Answer Discuss in Forum From above given figure , we can see that 
 ar △XBY = ar trap. XYCA (Given)
 ar(ΔABC) = 2 ar(ΔXBY)ar(∆XBY) = 1 ar(∆ABC) 2 
 But ΔXBY ∼ ΔABC (∴ XY || AC)∴ ar(∆XBY) = XB2 ( Areas of similar triangle ) ar(∆ABC) AB2 Correct Option: DFrom above given figure , we can see that 
 ar △XBY = ar trap. XYCA(Given)
 ar(ΔABC) = 2 ar(ΔXBY)ar(∆XBY) = 1 ar(∆ABC) 2 
 But ΔXBY ∼ ΔABC (∴ XY || AC)∴ ar(∆XBY) = XB2 ( Areas of similar triangle ) ar(∆ABC) AB2 ∴ 1 = XB2 2 AB2 ∴ XB = 1 AB √2 AB - AX = 1 { ∴ AB - AX = XB } AB √2 ∴ 1 - AX = 1 AB √2 ⇒ AX = 1 - 1 AB √2 ⇒ AX = √2 - 1 AB √2 
-  Two poles of ht. a and b meters are p meters apart (b > a). The height of the point of intersection of the lines joining the top of each pole to the foot of the opposite pole is :
- 
                        View Hint View Answer Discuss in Forum As per given figure , we know that 1 = 1 + 1 h a b   Correct Option: CAs per given figure , we know that 1 = 1 + 1 h a b 1 = a+b h ab ∴ h = ab a+b   
 
	