Plane Geometry


  1. In the figure, BD and CD are angle bisectors of ∠ ABC and ∠ ACE, respectively. Then ∠ BDC is equal to :













  1. View Hint View Answer Discuss in Forum

    From above given figure , we have
    In ΔABC, ∠ACE = ∠ABC + ∠BAC
    Similarly in ΔBCD, ∠BDC = ∠DCE − ∠DBC [Ext. angle prop. of a Δ]

    But ∠DCE =1∠ACE and
    2

    1∠DBC =1∠ABC
    22

    Correct Option: C

    From above given figure , we have
    In ΔABC, ∠ACE = ∠ABC + ∠BAC
    Similarly in ΔBCD, ∠BDC = ∠DCE − ∠DBC [Ext. angle prop. of a Δ]

    But ∠DCE =1∠ACE and
    2

    1∠DBC =1∠ABC
    22

    Now ∠BDC = ∠DCE - ∠DBC
    =1(∠ACE - ∠ABC)
    2

    =1(∠ACE + ∠ABC - ∠ACE)
    2
    ∴ ∠BDC =1∠BAC
    2


  1. In a Δ ABC, the sides AB and AC are produced to P and Q respectively. The bisectors of ∠ OBC and ∠ QCB intersect at a point O. Then ∠ BOC is equal to:











  1. View Hint View Answer Discuss in Forum

    From given figure , We have ∠B + ∠CBP = 180° (Linear pair)

    1∠B + ∠CBP = 90°
    2
    1∠B + ∠1 = 90°
    2
    ⇒ ∠1 = 90° -1∠B ............ ( 1 )
    2
    Similarly ∠2 = 90° -1∠C
    2


    Correct Option: B

    From given figure , We have ∠B + ∠CBP = 180° (Linear pair)

    1∠B + ∠CBP = 90°
    2
    1∠B + ∠1 = 90°
    2
    ⇒ ∠1 = 90° -1∠B ............ ( 1 )
    2
    Similarly ∠2 = 90° -1∠C
    2

    In ΔOBC, we have ∠1 + ∠2 + ∠BOC = 180° (Angle sum prop.)
    90° -1∠B+ 90° -1∠C + ∠BOC = 180°
    22
    ⇒ ∠BOC = 1(∠B + ∠C)
    2
    ∠BOC =1(∠A + ∠B + ∠C) -1∠A
    22
    ∠BOC = 1×180° -1∠A { ∴ ∠A + ∠B + ∠C = 180° }
    22
    ∠BOC = 90° -1∠A
    2




  1. In a Δ ABC, the bisectors of ∠ B and ∠ C intersect each other at a point O. Then ∠ BOC is equal to :











  1. View Hint View Answer Discuss in Forum

    In ΔABC, we know that ∠A + ∠B + ∠C = 180°

    1 ∠ A +1∠B +1∠C = 90°
    222
    1∠A + ∠1 + ∠2 = 90°
    2
    ∠1 + ∠2 = 90° -1∠A
    2

    Now , In ΔBOC, ∠1 + ∠2 + ∠BOC = 180° ................ ( 1 )
    90° -1∠A + ∠BOC = 180° { using (i) }
    2
    ⇒ ∠BOC = 90° + 1∠A
    2


    Correct Option: C

    In ΔABC, we know that ∠A + ∠B + ∠C = 180°

    1 ∠ A +1∠B +1∠C = 90°
    222
    1∠A + ∠1 + ∠2 = 90°
    2
    ∠1 + ∠2 = 90° -1∠A
    2

    Now , In ΔBOC, ∠1 + ∠2 + ∠BOC = 180° ................ ( 1 )
    90° -1∠A + ∠BOC = 180° { using (i) }
    2
    ⇒ ∠BOC = 90° + 1∠A
    2



  1. In the fig. XY || AC and XY divides triangular region ABC into two part equal in area.
    Then AXis equal to :
    AB













  1. View Hint View Answer Discuss in Forum

    From above given figure , we can see that
    ar △XBY = ar trap. XYCA (Given)
    ar(ΔABC) = 2 ar(ΔXBY)

    ar(∆XBY)=1
    ar(∆ABC)2

    But ΔXBY ∼ ΔABC (∴ XY || AC)
    ar(∆XBY)=XB2( Areas of similar triangle )
    ar(∆ABC)AB2

    Correct Option: D

    From above given figure , we can see that
    ar △XBY = ar trap. XYCA(Given)
    ar(ΔABC) = 2 ar(ΔXBY)

    ar(∆XBY)=1
    ar(∆ABC)2

    But ΔXBY ∼ ΔABC (∴ XY || AC)
    ar(∆XBY)=XB2( Areas of similar triangle )
    ar(∆ABC)AB2

    1=XB2
    2AB2

    XB=1
    AB√2
    AB - AX=1 { ∴ AB - AX = XB }
    AB√2

    ∴ 1 - AX=1
    AB√2

    AX= 1 - 1
    AB√2

    AX=√2 - 1
    AB√2



  1. Two poles of ht. a and b meters are p meters apart (b > a). The height of the point of intersection of the lines joining the top of each pole to the foot of the opposite pole is :











  1. View Hint View Answer Discuss in Forum

    As per given figure , we know that

    1=1+1
    hab


    Correct Option: C

    As per given figure , we know that

    1=1+1
    hab

    1=a+b
    hab

    ∴ h =ab
    a+b