- 
					 In a Δ ABC, the sides AB and AC are produced to P and Q respectively. The bisectors of ∠ OBC and ∠ QCB intersect at a point O. Then ∠ BOC is equal to:
- 
                        -  90 ° + 1 ∠A 2 
-  90 ° - 1 ∠A 2 
-  120° + 1 ∠A 2 
-  120° - 1 ∠A 2 
- None of these
 
-  
Correct Option: B
From given figure , We have ∠B + ∠CBP = 180° (Linear pair)
| ⇒ | 1 | ∠B + ∠CBP = 90° | 
| 2 | 
| ⇒ | 1 | ∠B + ∠1 = 90° | 
| 2 | 
| ⇒ ∠1 = 90° - | 1 | ∠B ............ ( 1 ) | 
| 2 | 
| Similarly ∠2 = 90° - | 1 | ∠C | 
| 2 | 
In ΔOBC, we have ∠1 + ∠2 + ∠BOC = 180° (Angle sum prop.)
| ⇒ |  | 90° - | 1 | ∠B |  | + |  | 90° - | 1 | ∠C |  | + ∠BOC = 180° | 
| 2 | 2 | 
| ⇒ ∠BOC = | 1 | (∠B + ∠C) | 
| 2 | 
| ∠BOC = | 1 | (∠A + ∠B + ∠C) - | 1 | ∠A | 
| 2 | 2 | 
| ∠BOC = | 1 | ×180° - | 1 | ∠A { ∴ ∠A + ∠B + ∠C = 180° } | 
| 2 | 2 | 
| ∠BOC = 90° - | 1 | ∠A | 
| 2 | 
 
					                    					 
	