- 
					 In a Δ ABC, the bisectors of ∠ B and ∠ C intersect each other at a point O. Then ∠ BOC is equal to :
- 
                        -  90 ° - 1 ∠A 2 
-  120° + 1 ∠A 2 
-  90 ° + 1 ∠A 2 
-  120° - 1 ∠A 2 
- None of these
 
-  
Correct Option: C
In ΔABC, we know that ∠A + ∠B + ∠C = 180°
| 1 | ∠ A + | 1 | ∠B + | 1 | ∠C = 90° | 
| 2 | 2 | 2 | 
| 1 | ∠A + ∠1 + ∠2 = 90° | 
| 2 | 
| ∠1 + ∠2 = 90° - | 1 | ∠A | 
| 2 | 
Now , In ΔBOC, ∠1 + ∠2 + ∠BOC = 180° ................ ( 1 )
|  | 90° - | 1 | ∠A |  | + ∠BOC = 180° { using (i) } | 
| 2 | 
| ⇒ ∠BOC = 90° + | 1 | ∠A | 
| 2 | 
 
					                    					 
	