-
In a Δ ABC, the bisectors of ∠ B and ∠ C intersect each other at a point O. Then ∠ BOC is equal to :
-
-
90 ° - 1 ∠A 2 -
120° + 1 ∠A 2 -
90 ° + 1 ∠A 2 -
120° - 1 ∠A 2 - None of these
-
Correct Option: C
In ΔABC, we know that ∠A + ∠B + ∠C = 180°
1 | ∠ A + | 1 | ∠B + | 1 | ∠C = 90° |
2 | 2 | 2 |
1 | ∠A + ∠1 + ∠2 = 90° |
2 |
∠1 + ∠2 = 90° - | 1 | ∠A |
2 |
Now , In ΔBOC, ∠1 + ∠2 + ∠BOC = 180° ................ ( 1 )
90° - | 1 | ∠A | + ∠BOC = 180° { using (i) } | ||
2 |
⇒ ∠BOC = 90° + | 1 | ∠A |
2 |