Time and Work


  1. 2 men and 3 boys can do a piece of work in 10 days while 3 men and 2 boys can do the same work in 8 days. In how many days can 2 men and 1 boy do the work ?









  1. View Hint View Answer Discuss in Forum

    According to the question, 20 men + 30 boys = 24 men + 16 boys
    ∴ 4 men = 14 boys
    ⇒ 2 men = 7 boys
    ⇒ 2 men + 1 boy = 8 boys
    ⇒ 2 men + 3 boys = 10 boys
    By M1 D1 = M2 D2
    ⇒ 10 × 10 = 8 × D2

    ⇒ D2 =
    10 × 10
    =
    25
    = 12
    1
    days
    822

    Aliter :
    Using Rule 11,
    Here, A1 = 2, B1 = 3, D1 = 10
    A2 = 3, B2 = 2, D2 = 8
    A3 = 2, B3 = 1
    Required time =
    D1D2(A1B2 - A2B1)
    days
    D1(A1B3 - A3B1) - D2(A2B3 - A3B2)

    =
    10(2 × 2 - 3 × 3)
    days
    10(2 × 1 - 2 × 3) - 8(3 × 1 - 2 × 2)

    =
    80 × -5
    = 12
    1
    days
    -40 + 82

    Correct Option: C

    According to the question, 20 men + 30 boys = 24 men + 16 boys
    ∴ 4 men = 14 boys
    ⇒ 2 men = 7 boys
    ⇒ 2 men + 1 boy = 8 boys
    ⇒ 2 men + 3 boys = 10 boys
    By M1 D1 = M2 D2
    ⇒ 10 × 10 = 8 × D2

    ⇒ D2 =
    10 × 10
    =
    25
    = 12
    1
    days
    822

    Aliter :
    Using Rule 11,
    Here, A1 = 2, B1 = 3, D1 = 10
    A2 = 3, B2 = 2, D2 = 8
    A3 = 2, B3 = 1
    Required time =
    D1D2(A1B2 - A2B1)
    days
    D1(A1B3 - A3B1) - D2(A2B3 - A3B2)

    =
    10(2 × 2 - 3 × 3)
    days
    10(2 × 1 - 2 × 3) - 8(3 × 1 - 2 × 2)

    =
    80 × -5
    = 12
    1
    days
    -40 + 82


  1. If 8 men or 12 boys can do a piece of work in 16 days, the number of days required to complete the work by 20 men and 6 boys is









  1. View Hint View Answer Discuss in Forum

    ∵ 8 men ≡ 12 boys
    ∴ 4 men ≡ 6 boys
    ⇒ 20 men ≡ 30 boys
    ⇒ 20 men + 6 boys = 36 boys
    ∴ M1D1 = M2D2
    ⇒ 12 × 16 = 36 × D2

    ⇒ D2 =
    12 × 16
    =
    16
    = 5
    1
    days
    3633

    Aliter :
    Using Rule 12,
    Here, A = 8, B = 12, a = 16
    A1 = 20, B1 = 6,
    Required number of days =
    a
    =
    16
    A1
    +
    B1
    20
    +
    6
    AB812

    =
    16
    =
    16 × 2
    = 5
    1
    days
    5
    +
    1
    123
    22

    Correct Option: A

    ∵ 8 men ≡ 12 boys
    ∴ 4 men ≡ 6 boys
    ⇒ 20 men ≡ 30 boys
    ⇒ 20 men + 6 boys = 36 boys
    ∴ M1D1 = M2D2
    ⇒ 12 × 16 = 36 × D2

    ⇒ D2 =
    12 × 16
    =
    16
    = 5
    1
    days
    3633

    Aliter :
    Using Rule 12,
    Here, A = 8, B = 12, a = 16
    A1 = 20, B1 = 6,
    Required number of days =
    a
    =
    16
    A1
    +
    B1
    20
    +
    6
    AB812

    =
    16
    =
    16 × 2
    = 5
    1
    days
    5
    +
    1
    123
    22



  1. If 10 men or 20 women or 40 children can do a piece of work in 7 months, then 5 men, 5 women and 5 children together can do half of the work in :









  1. View Hint View Answer Discuss in Forum

    10 men ≡ 20 women
    1 man = 2 women = 5 children
    1 woman = 2 children
    ∴ 5 men + 5 women + 5 children = 20 + 10 + 5 = 35 children
    ∴ M1D1 = M2D2
    ⇒ 40 × 7 = 35 × D2

    ⇒ D2 =
    40 × 7
    = 8 months
    2

    ∴ 5 men, 5 women and 5 children can do half of the work in 8 months Required time = 4 months.
    Aliter :
    Using Rule 13, Here, A = 10, B= 20, C = 40, a = 7
    A1 = 5, B1 = 5, C1 = 5
    Time taken to do same work =
    a
    A1
    +
    B1
    +
    C1
    ABC

    =
    7
    5
    +
    5
    +
    5
    102030

    =
    7
    1
    +
    1
    +
    1
    248

    =
    7
    4 + 2 + 1
    8

    = 8 months Half of the work they do in 4 months.

    Correct Option: D

    10 men ≡ 20 women
    1 man = 2 women = 5 children
    1 woman = 2 children
    ∴ 5 men + 5 women + 5 children = 20 + 10 + 5 = 35 children
    ∴ M1D1 = M2D2
    ⇒ 40 × 7 = 35 × D2

    ⇒ D2 =
    40 × 7
    = 8 months
    2

    ∴ 5 men, 5 women and 5 children can do half of the work in 8 months Required time = 4 months.
    Aliter :
    Using Rule 13, Here, A = 10, B= 20, C = 40, a = 7
    A1 = 5, B1 = 5, C1 = 5
    Time taken to do same work =
    a
    A1
    +
    B1
    +
    C1
    ABC

    =
    7
    5
    +
    5
    +
    5
    102030

    =
    7
    1
    +
    1
    +
    1
    248

    =
    7
    4 + 2 + 1
    8

    = 8 months Half of the work they do in 4 months.


  1. 3 men and 4 boys can complete a piece of work in 12 days. 4 men and 3 boys can do the same work in 10 days. Then 2 men and 3 boys can finish the work in









  1. View Hint View Answer Discuss in Forum

    12 (3 men + 4 boys)
    ≡ 10 (4 men + 3 boys)
    ⇒ 36 men + 48 boys = 40 men + 30 boys
    ⇒ 4 men = 18 boys
    ⇒ 2 men = 9 boys
    ∴ 4 men + 3 boys
    = 21 boys, who do the work in 10 days and 2 men + 3 boys = 12 boys
    ∴ M1D1 = M2D2
    ⇒ 21 × 10 = 12 × D2

    ⇒ D2 =
    21 × 10
    =
    35
    = 17
    1
    days
    1222

    Aliter :
    Using Rule 11, Here, A1 = 3, B1 = 4, D1 = 12
    A2 = 4, B2 = 3, D2 = 10
    A3 = 2, B3 = 3
    Required time =
    D1D2(A1B2 - A2B1)
    days
    D1(A1B3 - A3B1) - D2(A2B3 - A3B2)

    =
    12 × 10(3 × 3 - 4 × 4)
    days
    12(3 × 3 - 2 × 4) - 10(4 × 3 - 2 × 3)

    =
    120 × - 7
    days
    12(9 - 8) - 10 × 6

    =
    - 840
    = 17
    1
    days
    - 482

    Correct Option: A

    12 (3 men + 4 boys)
    ≡ 10 (4 men + 3 boys)
    ⇒ 36 men + 48 boys = 40 men + 30 boys
    ⇒ 4 men = 18 boys
    ⇒ 2 men = 9 boys
    ∴ 4 men + 3 boys
    = 21 boys, who do the work in 10 days and 2 men + 3 boys = 12 boys
    ∴ M1D1 = M2D2
    ⇒ 21 × 10 = 12 × D2

    ⇒ D2 =
    21 × 10
    =
    35
    = 17
    1
    days
    1222

    Aliter :
    Using Rule 11, Here, A1 = 3, B1 = 4, D1 = 12
    A2 = 4, B2 = 3, D2 = 10
    A3 = 2, B3 = 3
    Required time =
    D1D2(A1B2 - A2B1)
    days
    D1(A1B3 - A3B1) - D2(A2B3 - A3B2)

    =
    12 × 10(3 × 3 - 4 × 4)
    days
    12(3 × 3 - 2 × 4) - 10(4 × 3 - 2 × 3)

    =
    120 × - 7
    days
    12(9 - 8) - 10 × 6

    =
    - 840
    = 17
    1
    days
    - 482



  1. 6 men and 8 women can do a work in 10 days, Then 3 men and 4 women can do the same work in









  1. View Hint View Answer Discuss in Forum

    6m + 8w ≡ 10 days
    ⇒ 2 (3m + 4w) ≡ 10 days
    ⇒ 3m + 4w ≡ 20 days
    [Since the workforce has become half of the original force, so number of days must be double].
    Aliter :
    Using Rule 14,
    Let us assume efficiency of 6 men
    = efficiency of 8 men.
    A = 6, a = 20
    B = 8, b = 20
    A1 = 3, B1 = 4

    ∴ Required time =
    1
    A1
    +
    B1
    A × aB × b

    =
    1
    1
    +
    B1
    4040

    =
    40
    = 20days
    2

    Correct Option: B

    6m + 8w ≡ 10 days
    ⇒ 2 (3m + 4w) ≡ 10 days
    ⇒ 3m + 4w ≡ 20 days
    [Since the workforce has become half of the original force, so number of days must be double].
    Aliter :
    Using Rule 14,
    Let us assume efficiency of 6 men
    = efficiency of 8 men.
    A = 6, a = 20
    B = 8, b = 20
    A1 = 3, B1 = 4

    ∴ Required time =
    1
    A1
    +
    B1
    A × aB × b

    =
    1
    1
    +
    B1
    4040

    =
    40
    = 20days
    2