Algebra


  1. Sum of the factors of 4b²c² – (b² + c² – a²)² is :









  1. View Hint View Answer Discuss in Forum

    4b²c² – (b² + c² – a²)²
    = (2bc)² – (b² + c² – a²)²
    = (2bc + b² + c² –a²) (2bc – b² – c² + a²)
    = {(b + c)² – a²} {a² – (b² + c² – 2bc)}
    = (b + c + a) (b + c – a) {a² – (b–c)²}
    = (b + c + a) (b + c – a) (a + b – c) (a – b + c)
    ∴ Required sum
    = b + c + a + b + c – a + a + b – c + a – b + c
    = 2 (a + b + c)

    Correct Option: B

    4b²c² – (b² + c² – a²)²
    = (2bc)² – (b² + c² – a²)²
    = (2bc + b² + c² –a²) (2bc – b² – c² + a²)
    = {(b + c)² – a²} {a² – (b² + c² – 2bc)}
    = (b + c + a) (b + c – a) {a² – (b–c)²}
    = (b + c + a) (b + c – a) (a + b – c) (a – b + c)
    ∴ Required sum
    = b + c + a + b + c – a + a + b – c + a – b + c
    = 2 (a + b + c)


  1. If (4a – 3)² = 0, then the value of 64a³ – 48a² + 12a + 13 is :









  1. View Hint View Answer Discuss in Forum

    (4a – 3)² = 0
    ⇒ 4a – 3 = 0
    ⇒ 4a = 3
    ⇒ a = 3/4
    ∴ 64a³ – 48a² + 12a + 13

    = 64 ×
    3
    ³ - 48 ×
    3
    ² + 12 ×
    3
    + 13
    444

    = 64 ×
    27
    -
    48 × 9
    + 9 + 13
    6416

    = 27 – 27 + 22 = 22

    Correct Option: C

    (4a – 3)² = 0
    ⇒ 4a – 3 = 0
    ⇒ 4a = 3
    ⇒ a = 3/4
    ∴ 64a³ – 48a² + 12a + 13

    = 64 ×
    3
    ³ - 48 ×
    3
    ² + 12 ×
    3
    + 13
    444

    = 64 ×
    27
    -
    48 × 9
    + 9 + 13
    6416

    = 27 – 27 + 22 = 22



  1. .If x, y, z are the three factors of a³ – 7a – 6, then value of (x + y + z) will be









  1. View Hint View Answer Discuss in Forum

    a³ – 7a – 6 = 0
    When a = –1
    f(a) = –1 + 7 – 6 = 0
    ∴ (a + 1) is a factor.

    ∴ a² – a – 6 = a² – 3a + 2a – 6
    = a (a – 3) + 2 (a – 3)
    = (a – 3) (a + 2)
    ∴ x + y + z
    = a + 1 + a – 3 + a + 2 = 3a

    Correct Option: A

    a³ – 7a – 6 = 0
    When a = –1
    f(a) = –1 + 7 – 6 = 0
    ∴ (a + 1) is a factor.

    ∴ a² – a – 6 = a² – 3a + 2a – 6
    = a (a – 3) + 2 (a – 3)
    = (a – 3) (a + 2)
    ∴ x + y + z
    = a + 1 + a – 3 + a + 2 = 3a


  1. If x +
    1
    = -2, then the value of x7 +
    1
    is :
    xx7









  1. View Hint View Answer Discuss in Forum

    x +
    1
    = -2
    x

    x² + 1
    = -2
    x

    ⇒ x² + 1 = – 2x
    ⇒ x² + 2x + 1 = 0
    ⇒ (x + 1)² = 0
    ⇒ x + 1 = 0 ⇒ x = –1
    ∴ x7 +
    1
    = (-1)7 +
    1
    x7(-1)7

    = –1 –1 = – 2

    Correct Option: D

    x +
    1
    = -2
    x

    x² + 1
    = -2
    x

    ⇒ x² + 1 = – 2x
    ⇒ x² + 2x + 1 = 0
    ⇒ (x + 1)² = 0
    ⇒ x + 1 = 0 ⇒ x = –1
    ∴ x7 +
    1
    = (-1)7 +
    1
    x7(-1)7

    = –1 –1 = – 2



  1. If a² + b² + c² = 14 and a + b + c = 6, then the value of (ab + bc + ca) is,









  1. View Hint View Answer Discuss in Forum

    a² + b² + c² = 14 ..... (i)
    a + b + c = 6
    ∴ (a + b + c)² = 6² = 36
    ⇒ a² + b² + c² + 2 (ab + bc + ca) = 36
    ⇒ 14 + 2 (ab + bc + ca) = 36
    ⇒ 2 (ab + bc + ca) = 36 – 14 = 22

    ⇒ ab + bc + ca =
    22
    = 11
    2

    Correct Option: A

    a² + b² + c² = 14 ..... (i)
    a + b + c = 6
    ∴ (a + b + c)² = 6² = 36
    ⇒ a² + b² + c² + 2 (ab + bc + ca) = 36
    ⇒ 14 + 2 (ab + bc + ca) = 36
    ⇒ 2 (ab + bc + ca) = 36 – 14 = 22

    ⇒ ab + bc + ca =
    22
    = 11
    2