Algebra


  1. If x = 999, y = 1000, z = 1001, then the value of
    x³ + y³ + z³ - 3xyz
    is :
    x - y + z









  1. View Hint View Answer Discuss in Forum

    x³ + y³ + z³ – 3xyz = 1/2 (x + y + z) {(x – y)² + (y – z)² + (z – x)²}

    x³ + y³ + z³ – 3xyz
    x - y + z

    =
    1/2(x + y + z){(x-y)² + (y-z)² + (y-z)² + (z-x)²}
    x - y + z

    =
    1
    (999 + 1000 + 100) =
    {999 + 1000)² + (1000 - 10001)² + (1001 + 999)²}
    2(999 - 1000 + 1001)

    =
    3000
    × (1 + 1 + 4)
    2 × 1000

    =
    18
    = 9
    2

    Correct Option: D

    x³ + y³ + z³ – 3xyz = 1/2 (x + y + z) {(x – y)² + (y – z)² + (z – x)²}

    x³ + y³ + z³ – 3xyz
    x - y + z

    =
    1/2(x + y + z){(x-y)² + (y-z)² + (y-z)² + (z-x)²}
    x - y + z

    =
    1
    (999 + 1000 + 100) =
    {999 + 1000)² + (1000 - 10001)² + (1001 + 999)²}
    2(999 - 1000 + 1001)

    =
    3000
    × (1 + 1 + 4)
    2 × 1000

    =
    18
    = 9
    2


  1. If a + b + c = 0, then the value of (a³ + b³ + c³) is









  1. View Hint View Answer Discuss in Forum

    If a + b + c = 0 then, a³ + b³ + c³ = 3abc
    ∵ a³ + b³ + c³ – 3abc = (a + b + c) (a² + b² + c² – ab – bc – ac)

    Correct Option: C

    If a + b + c = 0 then, a³ + b³ + c³ = 3abc
    ∵ a³ + b³ + c³ – 3abc = (a + b + c) (a² + b² + c² – ab – bc – ac)



  1. If x² – 4x + 1 = 0, then the value of
    x6 + 1
    is :









  1. View Hint View Answer Discuss in Forum

    x² – 4x + 1 = 0
    ⇒ x² + 1 = 4x

    x² + 1
    =
    4x
    xx

    ⇒ x +
    1
    = 4
    x

    On cubing both sides,
    x +
    1
    ³ = 64
    x

    x³ +
    1
    + 3 x +
    1
    ³ = 64
    x

    ⇒ x³ +
    1
    + 3 × 4 = 64

    ⇒ x³ +
    1
    = 64 - 12 = 52

    x6 + 1
    = 52

    Correct Option: B

    x² – 4x + 1 = 0
    ⇒ x² + 1 = 4x

    x² + 1
    =
    4x
    xx

    ⇒ x +
    1
    = 4
    x

    On cubing both sides,
    x +
    1
    ³ = 64
    x

    x³ +
    1
    + 3 x +
    1
    ³ = 64
    x

    ⇒ x³ +
    1
    + 3 × 4 = 64

    ⇒ x³ +
    1
    = 64 - 12 = 52

    x6 + 1
    = 52


  1. If x = 93, y = 93, z = 94 then the value of (x² – y² + 10xz + 10yz) is









  1. View Hint View Answer Discuss in Forum

    x² – y² + 10xz + 10yz
    ⇒ (x + y) (x – y) + 10z (x + y)
    = (x + y) (x – y + 10z)
    = (93 + 93) (93 – 93 + 10 × 94)
    = 186 × 940 = 174840

    Correct Option: C

    x² – y² + 10xz + 10yz
    ⇒ (x + y) (x – y) + 10z (x + y)
    = (x + y) (x – y + 10z)
    = (93 + 93) (93 – 93 + 10 × 94)
    = 186 × 940 = 174840



  1. If x = 222, y = 223, z = 225 then the value of (x³ + y³ + z³ + 3xyz) is :









  1. View Hint View Answer Discuss in Forum

    x³ + y³ + z³ – 3xyz

    =
    1
    (x + y + z){(x-y)² + (y-z)² + (z-x)²}
    2

    =
    1
    (222 + 223 + 225){(222-223)² + (223-225)² + (225-222)²}
    2

    =
    1
    × 670(1 + 4 + 9)
    2

    =
    670 × 14
    = 4690
    2

    Correct Option: B

    x³ + y³ + z³ – 3xyz

    =
    1
    (x + y + z){(x-y)² + (y-z)² + (z-x)²}
    2

    =
    1
    (222 + 223 + 225){(222-223)² + (223-225)² + (225-222)²}
    2

    =
    1
    × 670(1 + 4 + 9)
    2

    =
    670 × 14
    = 4690
    2