Algebra


  1. If 2x +
    2
    = 4, then the value of 27x³ +
    1
    is :
    9x27x³









  1. View Hint View Answer Discuss in Forum

    ∵ 2x +
    2
    = 4
    9x

    On dividing both sides by 2,
    x +
    2
    = 6
    3x

    On multiplying both sides by 3,
    3x +
    1
    ³ = 6³
    3x

    On cubing both sides,
    ∴ 27x³ +
    1
    + 3 × 3x ×
    1
    3x +
    1
    = 216
    27x³3x3x

    ⇒ 27x³ +
    1
    + 3 × 6 = 216
    27x³

    ⇒ 27x³ +
    1
    = 216 - 18
    27x³

    = 198

    Correct Option: B

    ∵ 2x +
    2
    = 4
    9x

    On dividing both sides by 2,
    x +
    2
    = 6
    3x

    On multiplying both sides by 3,
    3x +
    1
    ³ = 6³
    3x

    On cubing both sides,
    ∴ 27x³ +
    1
    + 3 × 3x ×
    1
    3x +
    1
    = 216
    27x³3x3x

    ⇒ 27x³ +
    1
    + 3 × 6 = 216
    27x³

    ⇒ 27x³ +
    1
    = 216 - 18
    27x³

    = 198


  1. If xy (x + y) = m, then the value of (x³ + y³ + 3m) is :









  1. View Hint View Answer Discuss in Forum

    xy (x + y) = m (Given)
    ∴ x³ + y³ + 3m
    = x³ + y³ + 3xy (x + y)

    = (x + y)³ =
    m
    ³ =
    xyx³y³

    Correct Option: C

    xy (x + y) = m (Given)
    ∴ x³ + y³ + 3m
    = x³ + y³ + 3xy (x + y)

    = (x + y)³ =
    m
    ³ =
    xyx³y³



  1. If p +
    1
    = 1 then the value of (p + 2)² +
    1
    - 3 is :
    p + 2(p + 2)³









  1. View Hint View Answer Discuss in Forum

    Given,

    p +
    1
    = 1
    p + 2

    ⇒ (p + 2) +
    1
    = 2 + 1 = 3
    p + 2

    On cubing both sides,
    ⇒ (p + 2)³ +
    1
    + 3(p + 2) ×
    1
    p + 2 +
    1
    = 27
    (p + 2)³p + 2p + 2

    ⇒ (p + 2)³ +
    1
    + 3 × 3 = 27
    (p + 2)³

    ⇒ (p + 2)³ +
    1
    = 27 - 9 = 18
    (p + 2)³

    ∴ (p + 2)³ +
    1
    - 3
    (p + 2)³

    = 18 – 3 = 15

    Correct Option: D

    Given,

    p +
    1
    = 1
    p + 2

    ⇒ (p + 2) +
    1
    = 2 + 1 = 3
    p + 2

    On cubing both sides,
    ⇒ (p + 2)³ +
    1
    + 3(p + 2) ×
    1
    p + 2 +
    1
    = 27
    (p + 2)³p + 2p + 2

    ⇒ (p + 2)³ +
    1
    + 3 × 3 = 27
    (p + 2)³

    ⇒ (p + 2)³ +
    1
    = 27 - 9 = 18
    (p + 2)³

    ∴ (p + 2)³ +
    1
    - 3
    (p + 2)³

    = 18 – 3 = 15


  1. Ifx +
    1
    ≠ 0 and x³ +
    1
    = 0 then the value of x4 +
    1
    4 is :
    xx4









  1. View Hint View Answer Discuss in Forum

    x³ +
    1
    = 0

    x +
    1
    ³ - 3x +
    1
    = 0
    xx

    x +
    1
    ³ = 3x +
    1
    xx

    x +
    1
    ² = 3x +
    x

    On squaring both sides,
    x +
    1
    4 = 3² = 9
    x

    Correct Option: A

    x³ +
    1
    = 0

    x +
    1
    ³ - 3x +
    1
    = 0
    xx

    x +
    1
    ³ = 3x +
    1
    xx

    x +
    1
    ² = 3x +
    x

    On squaring both sides,
    x +
    1
    4 = 3² = 9
    x



  1. If 2x -
    2
    = 1(x ≠ 0) then the value of x³ -
    1
    is
    x










  1. View Hint View Answer Discuss in Forum

    2x -
    2
    = 1
    x

    On dividing both sides by 2,
    x -
    1
    =
    1
    x2

    On cubing both sides,
    x -
    1
    =
    1
    x8

    ⇒ x³ -
    1
    - 1 x -
    1
    =
    1
    x8

    ⇒ x³ -
    1
    - 3 ×
    1
    =
    1
    28

    ⇒ x³ -
    1
    =
    3
    +
    1
    28

    ⇒ x³ -
    1
    =
    12 + 1
    =
    13
    88

    Correct Option: B

    2x -
    2
    = 1
    x

    On dividing both sides by 2,
    x -
    1
    =
    1
    x2

    On cubing both sides,
    x -
    1
    =
    1
    x8

    ⇒ x³ -
    1
    - 1 x -
    1
    =
    1
    x8

    ⇒ x³ -
    1
    - 3 ×
    1
    =
    1
    28

    ⇒ x³ -
    1
    =
    3
    +
    1
    28

    ⇒ x³ -
    1
    =
    12 + 1
    =
    13
    88