Algebra


  1. The mean of x and 1/x is N. Then the mean of x² and 1/x²is









  1. View Hint View Answer Discuss in Forum

    x +
    1
    = 2N
    x

    ∴ Mean of x² and
    1

    = x² +
    1
    = x +
    1
    ² - 2
    x
    22

    =
    (2N)² - 2
    =
    4N² - 2
    = 2N² - 1
    22

    Correct Option: B

    x +
    1
    = 2N
    x

    ∴ Mean of x² and
    1

    = x² +
    1
    = x +
    1
    ² - 2
    x
    22

    =
    (2N)² - 2
    =
    4N² - 2
    = 2N² - 1
    22


  1. If 3(a² + b² + c²) = (a + b + c)², then the relation between a, b and c is









  1. View Hint View Answer Discuss in Forum

    3a² + 3b² + 3c² = (a + b + c)²
    ⇒ 3a² + 3b² + 3c² = a² + b² + c² + 2ab + 2bc + 2ac
    ⇒ 3a² + 3b² + 3c² – a² – b² – c² – 2ab – 2bc – 2ac = 0
    ⇒ 2a² + 2b² + 2c² – 2ab – 2bc – 2ac = 0
    ⇒ a² + b² – 2ab + b² + ² – 2bc + a² + c² – 2ac = 0
    ⇒ (a – b)² + (b – c)² + (c – a)² = 0
    ⇒ a – b = 0 ⇒ a = b
    b – c = 0 ⇒ b = c
    c – a = 0 ⇒ c = a
    ∴ a = b = c

    Correct Option: D

    3a² + 3b² + 3c² = (a + b + c)²
    ⇒ 3a² + 3b² + 3c² = a² + b² + c² + 2ab + 2bc + 2ac
    ⇒ 3a² + 3b² + 3c² – a² – b² – c² – 2ab – 2bc – 2ac = 0
    ⇒ 2a² + 2b² + 2c² – 2ab – 2bc – 2ac = 0
    ⇒ a² + b² – 2ab + b² + ² – 2bc + a² + c² – 2ac = 0
    ⇒ (a – b)² + (b – c)² + (c – a)² = 0
    ⇒ a – b = 0 ⇒ a = b
    b – c = 0 ⇒ b = c
    c – a = 0 ⇒ c = a
    ∴ a = b = c



  1. Slope of a line which cuts off intercepts of equal lengths on the axis is









  1. View Hint View Answer Discuss in Forum

    As the lines have equal intercepts.
    ∴ Equation of line is x + y = a
    ∴ Slope = –1

    Correct Option: C

    As the lines have equal intercepts.
    ∴ Equation of line is x + y = a
    ∴ Slope = –1


  1. Three numbers are in Arithmetic Progression (A.P.) whose sum is 30 and the product is 910. Then the greatest number in the A.P.is









  1. View Hint View Answer Discuss in Forum

    Let three numbers in A.P. be a – d, a and a + d respectively. According to the question, a – d + a + a + d = 30

    ⇒ 3a = 30 ⇒ a =
    30
    = 10
    3

    Again, a (a – d) (a + d) = 910
    ⇒ 10 (10 – d) (10 + d) = 910
    ⇒ 100 – d² = 91
    ⇒ d² = 100 – 91 = 9
    ⇒ d = √9 = 3
    ∴ Largest number = a + d = 10 + 3 = 13

    Correct Option: C

    Let three numbers in A.P. be a – d, a and a + d respectively. According to the question, a – d + a + a + d = 30

    ⇒ 3a = 30 ⇒ a =
    30
    = 10
    3

    Again, a (a – d) (a + d) = 910
    ⇒ 10 (10 – d) (10 + d) = 910
    ⇒ 100 – d² = 91
    ⇒ d² = 100 – 91 = 9
    ⇒ d = √9 = 3
    ∴ Largest number = a + d = 10 + 3 = 13



  1. If UR =
    1
    -
    1
    then the value of U1 + U2 + U3 + U4 + U5 is :
    nn + 1









  1. View Hint View Answer Discuss in Forum

    UR =
    1
    -
    1
    nn + 1

    U1 =
    1
    -
    1
    12

    U2 =
    1
    -
    1
    23

    U3 =
    1
    -
    1
    34

    U4 =
    1
    -
    1
    45

    U5 =
    1
    -
    1
    56

    ∴ U1 + U2 + U3 + U4 + U5
    = 1 -
    1
    +
    1
    -
    1
    +
    1
    -
    1
    +
    1
    -
    1
    +
    1
    -
    1
    223344456

    = 1 -
    6
    =
    6 - 1
    =
    5
    666

    Correct Option: B

    UR =
    1
    -
    1
    nn + 1

    U1 =
    1
    -
    1
    12

    U2 =
    1
    -
    1
    23

    U3 =
    1
    -
    1
    34

    U4 =
    1
    -
    1
    45

    U5 =
    1
    -
    1
    56

    ∴ U1 + U2 + U3 + U4 + U5
    = 1 -
    1
    +
    1
    -
    1
    +
    1
    -
    1
    +
    1
    -
    1
    +
    1
    -
    1
    223344456

    = 1 -
    6
    =
    6 - 1
    =
    5
    666