Algebra
- The mean of x and 1/x is N. Then the mean of x² and 1/x²is
-
View Hint View Answer Discuss in Forum
x + 1 = 2N x ∴ Mean of x² and 1 x² = x² + 1 = x + 1 ² - 2 x² x 2 2 = (2N)² - 2 = 4N² - 2 = 2N² - 1 2 2 Correct Option: B
x + 1 = 2N x ∴ Mean of x² and 1 x² = x² + 1 = x + 1 ² - 2 x² x 2 2 = (2N)² - 2 = 4N² - 2 = 2N² - 1 2 2
- If 3(a² + b² + c²) = (a + b + c)², then the relation between a, b and c is
-
View Hint View Answer Discuss in Forum
3a² + 3b² + 3c² = (a + b + c)²
⇒ 3a² + 3b² + 3c² = a² + b² + c² + 2ab + 2bc + 2ac
⇒ 3a² + 3b² + 3c² – a² – b² – c² – 2ab – 2bc – 2ac = 0
⇒ 2a² + 2b² + 2c² – 2ab – 2bc – 2ac = 0
⇒ a² + b² – 2ab + b² + ² – 2bc + a² + c² – 2ac = 0
⇒ (a – b)² + (b – c)² + (c – a)² = 0
⇒ a – b = 0 ⇒ a = b
b – c = 0 ⇒ b = c
c – a = 0 ⇒ c = a
∴ a = b = cCorrect Option: D
3a² + 3b² + 3c² = (a + b + c)²
⇒ 3a² + 3b² + 3c² = a² + b² + c² + 2ab + 2bc + 2ac
⇒ 3a² + 3b² + 3c² – a² – b² – c² – 2ab – 2bc – 2ac = 0
⇒ 2a² + 2b² + 2c² – 2ab – 2bc – 2ac = 0
⇒ a² + b² – 2ab + b² + ² – 2bc + a² + c² – 2ac = 0
⇒ (a – b)² + (b – c)² + (c – a)² = 0
⇒ a – b = 0 ⇒ a = b
b – c = 0 ⇒ b = c
c – a = 0 ⇒ c = a
∴ a = b = c
- Slope of a line which cuts off intercepts of equal lengths on the axis is
-
View Hint View Answer Discuss in Forum
As the lines have equal intercepts.
∴ Equation of line is x + y = a
∴ Slope = –1Correct Option: C
As the lines have equal intercepts.
∴ Equation of line is x + y = a
∴ Slope = –1
- Three numbers are in Arithmetic Progression (A.P.) whose sum is 30 and the product is 910. Then the greatest number in the A.P.is
-
View Hint View Answer Discuss in Forum
Let three numbers in A.P. be a – d, a and a + d respectively. According to the question, a – d + a + a + d = 30
⇒ 3a = 30 ⇒ a = 30 = 10 3
Again, a (a – d) (a + d) = 910
⇒ 10 (10 – d) (10 + d) = 910
⇒ 100 – d² = 91
⇒ d² = 100 – 91 = 9
⇒ d = √9 = 3
∴ Largest number = a + d = 10 + 3 = 13Correct Option: C
Let three numbers in A.P. be a – d, a and a + d respectively. According to the question, a – d + a + a + d = 30
⇒ 3a = 30 ⇒ a = 30 = 10 3
Again, a (a – d) (a + d) = 910
⇒ 10 (10 – d) (10 + d) = 910
⇒ 100 – d² = 91
⇒ d² = 100 – 91 = 9
⇒ d = √9 = 3
∴ Largest number = a + d = 10 + 3 = 13
-
If UR = 1 - 1 then the value of U1 + U2 + U3 + U4 + U5 is : n n + 1
-
View Hint View Answer Discuss in Forum
UR = 1 - 1 n n + 1 U1 = 1 - 1 1 2 U2 = 1 - 1 2 3 U3 = 1 - 1 3 4 U4 = 1 - 1 4 5 U5 = 1 - 1 5 6
∴ U1 + U2 + U3 + U4 + U5= 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 2 2 3 3 4 4 4 5 6 = 1 - 6 = 6 - 1 = 5 6 6 6 Correct Option: B
UR = 1 - 1 n n + 1 U1 = 1 - 1 1 2 U2 = 1 - 1 2 3 U3 = 1 - 1 3 4 U4 = 1 - 1 4 5 U5 = 1 - 1 5 6
∴ U1 + U2 + U3 + U4 + U5= 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 2 2 3 3 4 4 4 5 6 = 1 - 6 = 6 - 1 = 5 6 6 6