Algebra
- In what ratio, the line joining (– 1, 1) and (5, 7) is divided by the line x + y = 4 ?
-
View Hint View Answer Discuss in Forum
Let the ratio k : 1
= Using section formula,x = 5 × k + 1 × -1 k + 1 ⇒ x = 5k - 1 k + 1 y = 7 × k + 1 × 1 k + 1 ⇒ y = 7k + 1 k + 1
Putting the value of x and y in the equation of line, we get5k - 1 + 7k + 1 = 4 k + 1 k + 1
12k = 4(k + 1)
→ 12k = 4k + 4
8k = 4
k = 1/2
∴ Ratio is 1 : 2.Correct Option: C
Let the ratio k : 1
= Using section formula,x = 5 × k + 1 × -1 k + 1 ⇒ x = 5k - 1 k + 1 y = 7 × k + 1 × 1 k + 1 ⇒ y = 7k + 1 k + 1
Putting the value of x and y in the equation of line, we get5k - 1 + 7k + 1 = 4 k + 1 k + 1
12k = 4(k + 1)
→ 12k = 4k + 4
8k = 4
k = 1/2
∴ Ratio is 1 : 2.
- For what value of x the points (x, – 1), (2, 1) and (4, 5) are collinear ?
-
View Hint View Answer Discuss in Forum
When three points are collinear then area of triangle is zero.
⇒ ar∆ = x - 1 1 1 2 1 1 2 4 5 1
= 1/2 [x (1 – 5) + 1(2 – 4) + 1(10 – 4)]
⇒ – 4x – 2 + 6 = 0
⇒ – 4x + 4 = 0
⇒ x = 1Correct Option: D
When three points are collinear then area of triangle is zero.
⇒ ar∆ = x - 1 1 1 2 1 1 2 4 5 1
= 1/2 [x (1 – 5) + 1(2 – 4) + 1(10 – 4)]
⇒ – 4x – 2 + 6 = 0
⇒ – 4x + 4 = 0
⇒ x = 1
-
If 1 + 1 = 1 , then the value of (p³ – q³) is p q p + q
-
View Hint View Answer Discuss in Forum
1 + 1 = 1 p q p + q
⇒ ( p + q)² = pq
⇒ p² + 2pq + q² = pq
⇒ p² + pq + q² = 0
∴ p³ – q³ = (p – q) (p² + pq + q²) = 0Correct Option: D
1 + 1 = 1 p q p + q
⇒ ( p + q)² = pq
⇒ p² + 2pq + q² = pq
⇒ p² + pq + q² = 0
∴ p³ – q³ = (p – q) (p² + pq + q²) = 0
-
If x = a + 1 and y = a – 1 , then the value of x4 + y4 – 2x²y² is : a a
-
View Hint View Answer Discuss in Forum
x = a + 1 ; y = a - 1 a a ∴ x² - y² = a + 1 ² - a - 1 ² = 4a × 1 = 4 a a a
= 4 [∵ (a + b)² – (a – b)² = 4ab]
∴ x4 + y4 – 2x²y² = (x² – y²)²
= 4² = 16Correct Option: C
x = a + 1 ; y = a - 1 a a ∴ x² - y² = a + 1 ² - a - 1 ² = 4a × 1 = 4 a a a
= 4 [∵ (a + b)² – (a – b)² = 4ab]
∴ x4 + y4 – 2x²y² = (x² – y²)²
= 4² = 16
- If a³ – b³ = 56 and a – b = 2, what is the value of (a² + b²) ?
-
View Hint View Answer Discuss in Forum
a³ – b³ = 56
⇒ (a – b)³ + 3ab (a – b) = 56
⇒ (2)³ + 3ab × 2 = 56
⇒ 6ab = 56 – 8 = 48
⇒ ab = 48 ÷ 6 = 8
∴ a² + b² = (a – b)² + 2ab
= 2²+ 2 × 8
= 4 + 16 = 20Correct Option: B
a³ – b³ = 56
⇒ (a – b)³ + 3ab (a – b) = 56
⇒ (2)³ + 3ab × 2 = 56
⇒ 6ab = 56 – 8 = 48
⇒ ab = 48 ÷ 6 = 8
∴ a² + b² = (a – b)² + 2ab
= 2²+ 2 × 8
= 4 + 16 = 20