Algebra


  1. In what ratio, the line joining (– 1, 1) and (5, 7) is divided by the line x + y = 4 ?









  1. View Hint View Answer Discuss in Forum

    Let the ratio k : 1

    = Using section formula,

    x =
    5 × k + 1 × -1
    k + 1

    ⇒ x =
    5k - 1
    k + 1

    y =
    7 × k + 1 × 1
    k + 1

    ⇒ y =
    7k + 1
    k + 1

    Putting the value of x and y in the equation of line, we get
    5k - 1
    +
    7k + 1
    = 4
    k + 1k + 1

    12k = 4(k + 1)
    → 12k = 4k + 4
    8k = 4
    k = 1/2
    ∴ Ratio is 1 : 2.

    Correct Option: C

    Let the ratio k : 1

    = Using section formula,

    x =
    5 × k + 1 × -1
    k + 1

    ⇒ x =
    5k - 1
    k + 1

    y =
    7 × k + 1 × 1
    k + 1

    ⇒ y =
    7k + 1
    k + 1

    Putting the value of x and y in the equation of line, we get
    5k - 1
    +
    7k + 1
    = 4
    k + 1k + 1

    12k = 4(k + 1)
    → 12k = 4k + 4
    8k = 4
    k = 1/2
    ∴ Ratio is 1 : 2.


  1. For what value of x the points (x, – 1), (2, 1) and (4, 5) are collinear ?









  1. View Hint View Answer Discuss in Forum

    When three points are collinear then area of triangle is zero.

    ⇒ ar∆ = x- 11
    1
    211
    2451

    = 1/2 [x (1 – 5) + 1(2 – 4) + 1(10 – 4)]
    ⇒ – 4x – 2 + 6 = 0
    ⇒ – 4x + 4 = 0
    ⇒ x = 1

    Correct Option: D

    When three points are collinear then area of triangle is zero.

    ⇒ ar∆ = x- 11
    1
    211
    2451

    = 1/2 [x (1 – 5) + 1(2 – 4) + 1(10 – 4)]
    ⇒ – 4x – 2 + 6 = 0
    ⇒ – 4x + 4 = 0
    ⇒ x = 1



  1. If
    1
    +
    1
    =
    1
    , then the value of (p³ – q³) is
    pqp + q









  1. View Hint View Answer Discuss in Forum

    1
    +
    1
    =
    1
    pqp + q

    ⇒ ( p + q)² = pq
    ⇒ p² + 2pq + q² = pq
    ⇒ p² + pq + q² = 0
    ∴ p³ – q³ = (p – q) (p² + pq + q²) = 0

    Correct Option: D

    1
    +
    1
    =
    1
    pqp + q

    ⇒ ( p + q)² = pq
    ⇒ p² + 2pq + q² = pq
    ⇒ p² + pq + q² = 0
    ∴ p³ – q³ = (p – q) (p² + pq + q²) = 0


  1. If x = a +
    1
    and y = a –
    1
    , then the value of x4 + y4 – 2x²y² is :
    aa









  1. View Hint View Answer Discuss in Forum

    x = a +
    1
    ; y = a -
    1
    aa

    ∴ x² - y² = a +
    1
    ² - a -
    1
    ² = 4a ×
    1
    = 4
    aaa

    = 4 [∵ (a + b)² – (a – b)² = 4ab]
    ∴ x4 + y4 – 2x²y² = (x² – y²)²
    = 4² = 16

    Correct Option: C

    x = a +
    1
    ; y = a -
    1
    aa

    ∴ x² - y² = a +
    1
    ² - a -
    1
    ² = 4a ×
    1
    = 4
    aaa

    = 4 [∵ (a + b)² – (a – b)² = 4ab]
    ∴ x4 + y4 – 2x²y² = (x² – y²)²
    = 4² = 16



  1. If a³ – b³ = 56 and a – b = 2, what is the value of (a² + b²) ?









  1. View Hint View Answer Discuss in Forum

    a³ – b³ = 56
    ⇒ (a – b)³ + 3ab (a – b) = 56
    ⇒ (2)³ + 3ab × 2 = 56
    ⇒ 6ab = 56 – 8 = 48
    ⇒ ab = 48 ÷ 6 = 8
    ∴ a² + b² = (a – b)² + 2ab
    = 2²+ 2 × 8
    = 4 + 16 = 20

    Correct Option: B

    a³ – b³ = 56
    ⇒ (a – b)³ + 3ab (a – b) = 56
    ⇒ (2)³ + 3ab × 2 = 56
    ⇒ 6ab = 56 – 8 = 48
    ⇒ ab = 48 ÷ 6 = 8
    ∴ a² + b² = (a – b)² + 2ab
    = 2²+ 2 × 8
    = 4 + 16 = 20