Algebra


  1. If x + y + z = 1,
    1
    +
    1
    +
    1
    = 1 and xyz = – 1, then x³ + y³ + z³ is equal to
    xyz









  1. View Hint View Answer Discuss in Forum

    x + y + z = 1 ..... (i)
    Again,

    1
    +
    1
    +
    1
    =
    yz + zx + xy
    = 1
    xyzxyz

    ⇒ xy + yz + zx = xyz = –1 .. (ii)
    ∴ (x + y + z)² = x² + y² + z² + 2 (xy + yz + zx)
    ⇒ 1 = x² + y² + z² – 2
    ⇒ x² + y² + z² = 2 + 1 = 3 .(iii)
    ∴ x³ + y³ + z³ – 3xyz
    = (x + y + z) (x² + y² + z² – xy – yz – zx)
    = 1 (3 + 1) = 4
    ⇒ x³ + y³ + z³ + 3 = 4
    ⇒ x³ + y³ + z³ = 4 – 3 = 1

    Correct Option: B

    x + y + z = 1 ..... (i)
    Again,

    1
    +
    1
    +
    1
    =
    yz + zx + xy
    = 1
    xyzxyz

    ⇒ xy + yz + zx = xyz = –1 .. (ii)
    ∴ (x + y + z)² = x² + y² + z² + 2 (xy + yz + zx)
    ⇒ 1 = x² + y² + z² – 2
    ⇒ x² + y² + z² = 2 + 1 = 3 .(iii)
    ∴ x³ + y³ + z³ – 3xyz
    = (x + y + z) (x² + y² + z² – xy – yz – zx)
    = 1 (3 + 1) = 4
    ⇒ x³ + y³ + z³ + 3 = 4
    ⇒ x³ + y³ + z³ = 4 – 3 = 1


  1. If
    1
    (a² + 1) = 3 the value of
    a6 + 1
    is :
    a









  1. View Hint View Answer Discuss in Forum

    a² + 1
    = 3
    a

    ⇒ a +
    1
    = 3
    a

    On cubing both sides,
    a +
    1
    ³ = 3³
    a

    ⇒ a³ +
    1
    + 3a +
    1
    = 27
    a

    ⇒ a³ +
    1
    + 3 × 3 = 27

    a6 + 1
    = 27 - 9 = 18

    Correct Option: B

    a² + 1
    = 3
    a

    ⇒ a +
    1
    = 3
    a

    On cubing both sides,
    a +
    1
    ³ = 3³
    a

    ⇒ a³ +
    1
    + 3a +
    1
    = 27
    a

    ⇒ a³ +
    1
    + 3 × 3 = 27

    a6 + 1
    = 27 - 9 = 18



  1. The third proportional of the following numbers (x – y)², (x² – y²)² is :









  1. View Hint View Answer Discuss in Forum

    If c be the third proportional between a and b, then

    a
    =
    b
    bc

    ⇒ a³ +
    1
    + 3 × 3 = 27

    ⇒ c =
    =
    {(x² - y²)²}²
    a(x - y)²

    =
    {(x + y)}4
    (x - y)²

    = (x + y)4 (x – y)²

    Correct Option: B

    If c be the third proportional between a and b, then

    a
    =
    b
    bc

    ⇒ a³ +
    1
    + 3 × 3 = 27

    ⇒ c =
    =
    {(x² - y²)²}²
    a(x - y)²

    =
    {(x + y)}4
    (x - y)²

    = (x + y)4 (x – y)²


  1. If (x – 5)² + (y – 2)² + (z – 9)² = 0, then value of (x + y – z) is :









  1. View Hint View Answer Discuss in Forum

    If a² + b² + c² = 0
    ⇒ a = 0, b = 0, c = 0
    ∴ (x – 5)² + (y – 2)² + (z – 9)² = 0
    ∴ x – 5 = 0 ⇒ x = 5
    y – 2 = 0 ⇒ y = 2
    z – 9 = 0 ⇒ z = 9
    ∴ x + y – z = 5 + 2 – 9 = –2

    Correct Option: C

    If a² + b² + c² = 0
    ⇒ a = 0, b = 0, c = 0
    ∴ (x – 5)² + (y – 2)² + (z – 9)² = 0
    ∴ x – 5 = 0 ⇒ x = 5
    y – 2 = 0 ⇒ y = 2
    z – 9 = 0 ⇒ z = 9
    ∴ x + y – z = 5 + 2 – 9 = –2



  1. Ifx +
    1
    = 3 then x8 +
    1
    is equal to
    xx8









  1. View Hint View Answer Discuss in Forum

    x =
    1
    = 3
    x

    On squaring both sides,
    x +
    1
    ² = 9
    x

    ⇒ x² +
    1
    + 2 = 9

    ⇒ x² +
    1
    = 9 - 2 = 7

    On squaring again,
    x² +
    1
    = 49

    ⇒ x4 +
    1
    + 2 = 49
    a4

    ⇒ x4 +
    1
    = 49 - 2 = 47
    a4

    On squaring again,
    (x4)² +
    1
    ² + 2 = 47² = 2209
    x4

    ⇒ x8 +
    1
    = 2209 - 2 = 2207
    x8

    Correct Option: C

    x =
    1
    = 3
    x

    On squaring both sides,
    x +
    1
    ² = 9
    x

    ⇒ x² +
    1
    + 2 = 9

    ⇒ x² +
    1
    = 9 - 2 = 7

    On squaring again,
    x² +
    1
    = 49

    ⇒ x4 +
    1
    + 2 = 49
    a4

    ⇒ x4 +
    1
    = 49 - 2 = 47
    a4

    On squaring again,
    (x4)² +
    1
    ² + 2 = 47² = 2209
    x4

    ⇒ x8 +
    1
    = 2209 - 2 = 2207
    x8