Home » Aptitude » Algebra » Question
  1. If x + y + z = 1,
    1
    +
    1
    +
    1
    = 1 and xyz = – 1, then x³ + y³ + z³ is equal to
    xyz
    1. –1
    2. 1
    3. –2
    4. 2
Correct Option: B

x + y + z = 1 ..... (i)
Again,

1
+
1
+
1
=
yz + zx + xy
= 1
xyzxyz

⇒ xy + yz + zx = xyz = –1 .. (ii)
∴ (x + y + z)² = x² + y² + z² + 2 (xy + yz + zx)
⇒ 1 = x² + y² + z² – 2
⇒ x² + y² + z² = 2 + 1 = 3 .(iii)
∴ x³ + y³ + z³ – 3xyz
= (x + y + z) (x² + y² + z² – xy – yz – zx)
= 1 (3 + 1) = 4
⇒ x³ + y³ + z³ + 3 = 4
⇒ x³ + y³ + z³ = 4 – 3 = 1



Your comments will be displayed only after manual approval.