Compound Interest


  1. The compound interest on a certain sum of money for 2 years at 5% is ₹ 328, then the sum is









  1. View Hint View Answer Discuss in Forum

    Let the principal be Rs. P
    Given in question , Compound Interest ( CI ) = ₹ 328 , P = ? , Rate ( R ) = 5% , Time = 2 years

    ∴  C.I. = P 1 +
    R
    T − 1
    100

    ⇒  328 = P 1 +
    5
    2 − 1
    100

    ⇒  328 = P
    21
    2 − 1
    20

    ⇒  328 = P
    441
    − 1
    400

    ⇒  328 = P
    441 − 400
    400

    Correct Option: C

    Let the principal be Rs. P
    Given in question , Compound Interest ( CI ) = ₹ 328 , P = ? , Rate ( R ) = 5% , Time = 2 years

    ∴  C.I. = P 1 +
    R
    T − 1
    100

    ⇒  328 = P 1 +
    5
    2 − 1
    100

    ⇒  328 = P
    21
    2 − 1
    20

    ⇒  328 = P
    441
    − 1
    400

    ⇒  328 = P
    441 − 400
    400

    ⇒  328 =
    41P
    400

    ⇒  P =
    328 × 400
    = ₹ 3200
    41


  1. A sum of ₹ 3,200 invested at 10% p.a. compounded quarterly amounts to 3,362. Compute the time period.









  1. View Hint View Answer Discuss in Forum

    Here , Amount ( A ) = ₹ 3,362 , P = ₹ 3,200 , Rate ( R ) = 10% , Time = quarterly = 4t

    A = P 1 +
    R
    T
    100

    Interest is compounded quarterly ,
    3,362 = 3200 1 +
    10
    4t
    400

    ⇒ 
    3362
    = 1 +
    1
    4t
    320040

    ⇒ 
    1681
    =
    41
    4t
    160040

    Correct Option: A

    Here , Amount ( A ) = ₹ 3,362 , P = ₹ 3,200 , Rate ( R ) = 10% , Time = quarterly = 4t

    A = P 1 +
    R
    T
    100

    Interest is compounded quarterly ,
    3,362 = 3200 1 +
    10
    4t
    400

    ⇒ 
    3362
    = 1 +
    1
    4t
    320040

    ⇒ 
    1681
    =
    41
    4t
    160040

    ⇒ 
    41
    2 =
    41
    4t
    4040

    ⇒  4t = 2 ⇒ t =
    1
    year
    2



  1. The compound interest on ₹ 5,000 for 3 years at 10% p. a. will amount to









  1. View Hint View Answer Discuss in Forum

    Here , Compound Interest ( CI ) = ? , P = ₹ 5,000 , Rate ( R ) = 10% , Time = 3 years

    C.I. = P 1 +
    R
    T − 1
    100

    C.I. = 5000 1 +
    10
    3 − 1
    100

    C.I. = 5000
    11
    3 − 1
    10

    C.I. = 5000
    1331
    − 1
    1000

    Correct Option: B

    Here , Compound Interest ( CI ) = ? , P = ₹ 5,000 , Rate ( R ) = 10% , Time = 3 years

    C.I. = P 1 +
    R
    T − 1
    100

    C.I. = 5000 1 +
    10
    3 − 1
    100

    C.I. = 5000
    11
    3 − 1
    10

    C.I. = 5000
    1331
    − 1
    1000

    C.I. = 5000
    1331 - 1000
    1000

    C.I. =
    5000 × 331
    = ₹ 1655
    1000


  1. ₹ 800 at 5% per annum compounded annually will amount to ₹ 882 in









  1. View Hint View Answer Discuss in Forum

    Given that , Amount ( A ) = ₹ 882 , P = ₹ 800 , Rate ( R ) = 5% , Time = T years
    Using the given formula ,

    A = P 1 +
    R
    T
    100

    ⇒  882 = 800 1 +
    5
    T
    100

    ⇒ 
    882
    =
    21
    T
    80020

    Correct Option: B

    Given that , Amount ( A ) = ₹ 882 , P = ₹ 800 , Rate ( R ) = 5% , Time = T years
    Using the given formula ,

    A = P 1 +
    R
    T
    100

    ⇒  882 = 800 1 +
    5
    T
    100

    ⇒ 
    882
    =
    21
    T
    80020

    ⇒ 
    441
    =
    21
    2 =
    21
    T
    4002020

    Equating powers on both sides ,
    ∴  T = 2 years



  1. A man borrows ₹ 21000 at 10% compound interest. How much he has to pay annually at the end of each year, to settle his loan in two years ?









  1. View Hint View Answer Discuss in Forum

    If each instalment be y, then

    ∴Present worth of first instalment =
    y
    =
    10y
    [ 1 + ( 11 / 100 ) ]11

    Present worth of second instalment =
    y
    =
    100y
    [ 1 + ( 11 / 100 ) ]²121

    ∴ 
    10
    y +
    100
    y = 21000
    11121

    ⇒ 
    110y + 100y
    = 21000
    121

    ⇒  210y = 21000 × 121
    ⇒  y =
    21000 × 121
    = ₹ 12100
    210

    Second Method to solve this question :
    Here, n = 2 , P = ₹ 21000 , r = 10%
    Each annual instalment =
    P
    100
    +
    100
    2
    100 + r100 + r

    Each annual instalment =
    21000
    100
    +
    100
    2
    110110

    Correct Option: B

    If each instalment be y, then

    ∴Present worth of first instalment =
    y
    =
    10y
    [ 1 + ( 11 / 100 ) ]11

    Present worth of second instalment =
    y
    =
    100y
    [ 1 + ( 11 / 100 ) ]²121

    ∴ 
    10
    y +
    100
    y = 21000
    11121

    ⇒ 
    110y + 100y
    = 21000
    121

    ⇒  210y = 21000 × 121
    ⇒  y =
    21000 × 121
    = ₹ 12100
    210

    Second Method to solve this question :
    Here, n = 2 , P = ₹ 21000 , r = 10%
    Each annual instalment =
    P
    100
    +
    100
    2
    100 + r100 + r

    Each annual instalment =
    21000
    100
    +
    100
    2
    110110

    Each annual instalment =
    21000
    100
    +
    10000
    11012100

    Each annual instalment =
    21000
    10
    +
    100
    11121

    Each annual instalment =
    21000
    × 121
    110 + 100

    Each annual instalment =
    21000
    × 121 = 12100
    210