Compound Interest


  1. A certain sum, invested at 4% per annum compound interest, compounded halfyearly, amounts to ₹ 7,803 at the end of one year. The sum is









  1. View Hint View Answer Discuss in Forum

    Let the sum be P.
    As, the interest is compounded half-yearly,
    ∴  R = 2%, T = 2 half years , A = ₹ 7,803

    ∴  A = P 1 +
    R
    T
    100

    ⇒  7803 = P 1 +
    2
    2
    100

    ⇒  7803 = P 1 +
    1
    2
    50

    Correct Option: C

    Let the sum be P.
    As, the interest is compounded half-yearly,
    ∴  R = 2%, T = 2 half years , A = ₹ 7,803

    ∴  A = P 1 +
    R
    T
    100

    ⇒  7803 = P 1 +
    2
    2
    100

    ⇒  7803 = P 1 +
    1
    2
    50

    ⇒  7803 = P ×
    51
    ×
    51
    5050

    ⇒  P =
    7803 × 50 × 50
    = ₹ 7500
    51 × 51


  1. A certain sum of money yields ₹ 1261 as compound interest for 3 years at 5% per annum. The sum is









  1. View Hint View Answer Discuss in Forum

    Let the principal be ₹ p.
    Here , CI = ₹ 1261 , R = 5%, T = 3 years
    Using the given formula ,

    Now, C.I. = P 1 +
    R
    T − 1
    100

    ⇒  1261 = p 1 +
    5
    3 − 1
    100

    ⇒  1261 = p
    9261
    − 1
    8000

    ⇒  1261 = p
    9261 − 8000
    8000

    Correct Option: D

    Let the principal be ₹ p.
    Here , CI = ₹ 1261 , R = 5%, T = 3 years
    Using the given formula ,

    Now, C.I. = P 1 +
    R
    T − 1
    100

    ⇒  1261 = p 1 +
    5
    3 − 1
    100

    ⇒  1261 = p
    9261
    − 1
    8000

    ⇒  1261 = p
    9261 − 8000
    8000

    ⇒ 1261 =
    1261p
    8000

    ⇒  p =
    1261 × 8000
    = ₹ 8000
    1261



  1. In what time will ₹ 10,000 amount to ₹ 13310 at 20% per annum compounded half yearly?









  1. View Hint View Answer Discuss in Forum

    Here , A = ₹ 13310 , P = ₹ 10,000
    The rate of interest is compounded half yearly,
    ∴  r = 10% per half year

    Let time =
    T
    years = T half years
    2

    According to the question,
    Amount = P1 +
    R
    t
    100

    ⇒  13310 = 10000 1 +
    10
    T
    100

    ⇒ 
    13310
    =
    11
    T
    1000010

    Correct Option: A

    Here , A = ₹ 13310 , P = ₹ 10,000
    The rate of interest is compounded half yearly,
    ∴  r = 10% per half year

    Let time =
    T
    years = T half years
    2

    According to the question,
    Amount = P1 +
    R
    t
    100

    ⇒  13310 = 10000 1 +
    10
    T
    100

    ⇒ 
    13310
    =
    11
    T
    1000010

    ⇒ 
    11
    T =
    1331
    =
    11
    3
    10100010

    ⇒  T = 3 half years =1
    1
    years
    2


  1. The compound interest on ₹ 8,000 at 15% per annum for 2 years 4 months, compounded annually is:









  1. View Hint View Answer Discuss in Forum

    Given that , P = ₹ 8,000 , R = 15% , t = 2 years 4 months = [ 2 + ( 4 / 12 ) ] = 7 / 3 years
    Using the given formula ,

    Amount = P1 +
    R
    t
    100

    Amount = 80001 +
    15
    7/3
    100

    Amount = 80001 +
    3
    21 +
    3
    2020 × 3

    Correct Option: C

    Given that , P = ₹ 8,000 , R = 15% , t = 2 years 4 months = [ 2 + ( 4 / 12 ) ] = 7 / 3 years
    Using the given formula ,

    Amount = P1 +
    R
    t
    100

    Amount = 80001 +
    15
    7/3
    100

    Amount = 80001 +
    3
    21 +
    3
    2020 × 3

    Amount = 8000 ×
    23
    ×
    23
    ×
    21
    = ₹ 11109
    202020

    ∴  Compound Interest = Amount - Principal
    ∴  Compound Interest = ₹ (11109 – 8000) = ₹ 3109



  1. At what rate per annum will ₹ 32000 yield a compound interest of ₹ 5044 in 9 months interest being compounded quarterly ?









  1. View Hint View Answer Discuss in Forum

    Here , P = ₹ 32000 , compound interest ( CI ) = ₹ 5044 , T = 9 months = ( 3 / 4 ) years
    Let the rate of CI be R percent per annum.

    ∴  CI = P 1 +
    R
    T − 1
    100

    ⇒  5044 = 32000 1 +
    R
    3 − 1
    400

    [∵  Interest is compounded quarterly]
    ⇒ 
    5044
    = 1 +
    R
    3 − 1
    32000400

    ⇒  1 +
    R
    3 − 1 =
    1261
    4008000

    ⇒  1 +
    R
    3 = 1 +
    1261
    4008000

    ⇒  1 +
    R
    3 =
    9261
    =
    21
    3
    400800020

    Correct Option: A

    Here , P = ₹ 32000 , compound interest ( CI ) = ₹ 5044 , T = 9 months = ( 3 / 4 ) years
    Let the rate of CI be R percent per annum.

    ∴  CI = P 1 +
    R
    T − 1
    100

    ⇒  5044 = 32000 1 +
    R
    3 − 1
    400

    [∵  Interest is compounded quarterly]
    ⇒ 
    5044
    = 1 +
    R
    3 − 1
    32000400

    ⇒  1 +
    R
    3 − 1 =
    1261
    4008000

    ⇒  1 +
    R
    3 = 1 +
    1261
    4008000

    ⇒  1 +
    R
    3 =
    9261
    =
    21
    3
    400800020

    ⇒  1 +
    R
    =
    21
    R
    =
    21
    − 1 =
    1
    400204002020

    ⇒  R =
    400
    = 20
    20