Compound Interest
- The compound interest on Rs. 1000 at 10% per annum for 3 years in (Rs.) is :
-
View Hint View Answer Discuss in Forum
Here , Principal ( P ) = Rs. 1000 , Compound Interest ( CI ) = ? , Rate ( R ) = 10% , Time = 3 years
Using the given formula ,C.I. = P 1 + R T − 1 100 C.I. = 1000 1 + 10 3 − 1 100 C.I. = 1000 1 + 1 3 − 1 10 C.I. = 1000 11 3 − 1 10
Correct Option: B
Here , Principal ( P ) = Rs. 1000 , Compound Interest ( CI ) = ? , Rate ( R ) = 10% , Time = 3 years
Using the given formula ,C.I. = P 1 + R T − 1 100 C.I. = 1000 1 + 10 3 − 1 100 C.I. = 1000 1 + 1 3 − 1 10 C.I. = 1000 11 3 − 1 10 C.I. = 1000 1331 − 1 1000 ⇒ C.I. = 1000 × 331 = Rs. 331 1000
- What would be the compound interest of Rs. 25000 for 2 years at the rate of 5% per annum ?
-
View Hint View Answer Discuss in Forum
Given in question , Principal ( P ) = Rs. 25000 , Compound Interest ( CI ) = ? , Rate ( R ) = 5% , Time = 2 years
We can find required answer with the help of given formula ,C.I. = P 1 + R T − 1 100 C.I. = 25000 1 + 5 2 − 1 100 C.I. = 25000 1 + 1 2 − 1 20 C.I. = 25000 21 2 − 1 20 C.I. = 25000 441 − 1 400
Correct Option: B
Given in question , Principal ( P ) = Rs. 25000 , Compound Interest ( CI ) = ? , Rate ( R ) = 5% , Time = 2 years
We can find required answer with the help of given formula ,C.I. = P 1 + R T − 1 100 C.I. = 25000 1 + 5 2 − 1 100 C.I. = 25000 1 + 1 2 − 1 20 C.I. = 25000 21 2 − 1 20 C.I. = 25000 441 − 1 400 C.I. = 2500 441 − 400 400 C.I. = 25000 × 41 = Rs. 2562.5 400
- The compound interest on a certain sum of money for 2 years at 10% per annum is ₹ 420. The simple interest on the same sum at the same rate and for the same time will be
-
View Hint View Answer Discuss in Forum
Given that , Compound Interest ( CI ) = ₹ 420 , Rate ( R ) = 10% , Time = 2 years
If the principal be P thenC.I. = P 1 + R T − 1 100 ⇒ 420 = P 1 + 10 2 − 1 100 ⇒ 420 = P 121 − 100 100 ⇒ 420 = P × 21 100 ⇒ P = 420 × 100 = ₹ 2000 21 ∴ S.I. = PRT 100 S.I. = 2000 × 10 × 2 = ₹ 400 100
We can find required answer with the help of given formula :
Here, C.I. = Rs. 420 , R = 10% , S.I. = ?C.I.= S.I. 1 + R 200
Correct Option: D
Given that , Compound Interest ( CI ) = ₹ 420 , Rate ( R ) = 10% , Time = 2 years
If the principal be P thenC.I. = P 1 + R T − 1 100 ⇒ 420 = P 1 + 10 2 − 1 100 ⇒ 420 = P 121 − 100 100 ⇒ 420 = P × 21 100 ⇒ P = 420 × 100 = ₹ 2000 21 ∴ S.I. = PRT 100 S.I. = 2000 × 10 × 2 = ₹ 400 100
We can find required answer with the help of given formula :
Here, C.I. = Rs. 420 , R = 10% , S.I. = ?C.I.= S.I. 1 + R 200 420 = S.I. 1 + 10 200 420 = S.I. 210 200 S.I. = 420 × 200 = ₹ 400 210
- The sum for 2 years gives a compound interest of Rs. 3225 at the rate of 15% per annum. The sum is
-
View Hint View Answer Discuss in Forum
Given that , Principal ( P ) = ? , Compound Interest ( CI ) = Rs. 3225 , Rate ( R ) = 15% , Time = 2 years
Using the given formula ,C.I. = P 1 + R T − 1 100 ⇒ 3225 = P 1 + 15 2 − 1 100 ⇒ 3225 = P 1 + 3 2 − 1 20 ⇒ 3225 = P 23 2 − 1 20 ⇒ 3225 = P 529 − 1 400
Correct Option: A
Given that , Principal ( P ) = ? , Compound Interest ( CI ) = Rs. 3225 , Rate ( R ) = 15% , Time = 2 years
Using the given formula ,C.I. = P 1 + R T − 1 100 ⇒ 3225 = P 1 + 15 2 − 1 100 ⇒ 3225 = P 1 + 3 2 − 1 20 ⇒ 3225 = P 23 2 − 1 20 ⇒ 3225 = P 529 − 1 400 ⇒ 3225 = P 529 − 400 400 ⇒ 3225 = P × 129 400 ⇒ P = 3225 × 400 = Rs. 10000 129
- In 3 years Rs. 3000 amounts to Rs. 3993 at x% compound interest, compounded annually. The value of x is
-
View Hint View Answer Discuss in Forum
Given in question , Amount ( A ) = Rs. 3993 , P = Rs. 3000 , Rate = x% , Time = 3 years
Using the given formula ,A = P 1 + R T 100 ⇒ 3993 = 3000 1 + x 3 100 ⇒ 3993 = 1 + x 3 3000 100 ⇒ 1331 = 1 + x 3 1000 100 ⇒ 11 3 = 1 + x 3 10 100 ⇒ 1 + x = 11 100 10
Correct Option: A
Given in question , Amount ( A ) = Rs. 3993 , P = Rs. 3000 , Rate = x% , Time = 3 years
Using the given formula ,A = P 1 + R T 100 ⇒ 3993 = 3000 1 + x 3 100 ⇒ 3993 = 1 + x 3 3000 100 ⇒ 1331 = 1 + x 3 1000 100 ⇒ 11 3 = 1 + x 3 10 100 ⇒ 1 + x = 11 100 10 ⇒ x = 11 − 1 = 1 100 10 10 ⇒ x = 1 ×100 10
Hence , x = 10% per annum