Compound Interest


  1. The compound interest on a certain sum of money for 2 years at 5% per annum is ₹ 410. The simple interest on the same sum at the same rate and for the same time is









  1. View Hint View Answer Discuss in Forum

    Here , Compound Interest ( CI ) = ₹ 410 , Rate ( R ) = 5% , Time = 2 years

    Compound interest = P 1 +
    R
    T − 1
    100

    ⇒  410 = P 1 +
    5
    2 − 1
    100

    ⇒  410 = P 1 +
    1
    2 − 1
    20

    ⇒  410 = P
    21
    2 − 1
    20

    ⇒  410 = P
    441
    − 1
    400

    ⇒ 410 = P
    41
    400

    ⇒  P =
    410 × 400
    = ₹ 4000
    41

    ∴  S.I.=
    Principal × Time × Rate
    100

    S.I. =
    4000 × 2 × 5
    = ₹ 400
    100

    We can find required answer with the help of given formula :
    Here, C.I. = Rs. 410 , R = 5% , S.I. = ?
    C.I.= S.I.1 +
    R
    200

    Correct Option: A

    Here , Compound Interest ( CI ) = ₹ 410 , Rate ( R ) = 5% , Time = 2 years

    Compound interest = P 1 +
    R
    T − 1
    100

    ⇒  410 = P 1 +
    5
    2 − 1
    100

    ⇒  410 = P 1 +
    1
    2 − 1
    20

    ⇒  410 = P
    21
    2 − 1
    20

    ⇒  410 = P
    441
    − 1
    400

    ⇒ 410 = P
    41
    400

    ⇒  P =
    410 × 400
    = ₹ 4000
    41

    ∴  S.I.=
    Principal × Time × Rate
    100

    S.I. =
    4000 × 2 × 5
    = ₹ 400
    100

    We can find required answer with the help of given formula :
    Here, C.I. = Rs. 410 , R = 5% , S.I. = ?
    C.I.= S.I.1 +
    R
    200

    410 = S.I.1 +
    5
    200

    410 = S.I.
    205
    200

    S.I. =
    410 × 200
    = Rs.400
    205


  1. The compound interest on a certain sum of money at a certain rate per annum for two years is ₹ 2,050, and the simple interest on the same amount of money at the same rate for 3 years is ₹ 3,000. Then the sum of money is









  1. View Hint View Answer Discuss in Forum

    Given in question , S.I. for 3 years = ₹ 3000

    S.I. for 2 years =
    3000
    × 2 = ₹ 2000
    3

    ∴ Difference = C.I. – S.I. = 2050 – 2000 = ₹ 50
    S.I. =
    PR × 3
    100

    ⇒ 3000 =
    PR × 3
    100

    ⇒ PR =
    3000 × 100
    = ₹ 100000
    3

    Correct Option: A

    Given in question , S.I. for 3 years = ₹ 3000

    S.I. for 2 years =
    3000
    × 2 = ₹ 2000
    3

    ∴ Difference = C.I. – S.I. = 2050 – 2000 = ₹ 50
    S.I. =
    PR × 3
    100

    ⇒ 3000 =
    PR × 3
    100

    ⇒ PR =
    3000 × 100
    = ₹ 100000
    3

    ∴  Difference =
    P × R2
    10000

    ⇒  50 =
    P × (100000)2
    10000 × P2

    ⇒  P =
    1000000
    = ₹ 20000
    50



  1. A sum becomes ₹ 2,916 in 2 years at 8% per annum compound interest. The simple interest at 9% per annum for 3 years on the same amount will be









  1. View Hint View Answer Discuss in Forum

    Let principal be P.
    Here , Amount ( A ) = ₹ 2,916 , Rate = 8% , Time = 2 years
    Using the given formula ,

    A = P1 +
    R
    T
    100

    ⇒  2916 = P1 +
    8
    2
    100

    ⇒  2916 = P
    27
    2
    25

    Correct Option: B

    Let principal be P.
    Here , Amount ( A ) = ₹ 2,916 , Rate = 8% , Time = 2 years
    Using the given formula ,

    A = P1 +
    R
    T
    100

    ⇒  2916 = P1 +
    8
    2
    100

    ⇒  2916 = P
    27
    2
    25

    ⇒  P =
    2916 × 25 × 25
    = ₹ 2500
    27 × 27

    Now, Time = 3 years , Rate = 9%
    ∴  S.I.=
    P × R × T
    100

    S.I. =
    2500 × 9 × 3
    = ₹ 675
    100


  1. If the compound interest on a certain sum for two years at 12% per annum is ₹ 2,544, the simple interest on it at the same rate for 2 years will be









  1. View Hint View Answer Discuss in Forum

    Given that , Compound Interest ( CI ) = ₹ 2,544 , Rate ( R ) = 12% , Time = 2 years
    Using the given formula ,

    C.I. = P 1 +
    R
    T − 1
    100

    ⇒  2544 = P 1 +
    12
    2 − 1
    100

    ⇒  2544 = P
    28
    2 − 1
    25

    ⇒  2544 = P
    784
    − 1
    625

    ⇒  2544 = P
    784 − 625
    625

    2544 =
    P × 159
    625

    ⇒  P =
    2544 × 625
    = ₹ 10000
    159

    ∴  S.I. =
    P × R × T
    100

    S.I. =
    10000 × 2 × 12
    = ₹ 2400
    100

    Second Method to solve this question :
    Here, C.I. = Rs. 2544 , R = 12% , S.I. = ?
    C.I.= S.I.1 +
    R
    200

    Correct Option: A

    Given that , Compound Interest ( CI ) = ₹ 2,544 , Rate ( R ) = 12% , Time = 2 years
    Using the given formula ,

    C.I. = P 1 +
    R
    T − 1
    100

    ⇒  2544 = P 1 +
    12
    2 − 1
    100

    ⇒  2544 = P
    28
    2 − 1
    25

    ⇒  2544 = P
    784
    − 1
    625

    ⇒  2544 = P
    784 − 625
    625

    2544 =
    P × 159
    625

    ⇒  P =
    2544 × 625
    = ₹ 10000
    159

    ∴  S.I. =
    P × R × T
    100

    S.I. =
    10000 × 2 × 12
    = ₹ 2400
    100

    Second Method to solve this question :
    Here, C.I. = Rs. 2544 , R = 12% , S.I. = ?
    C.I.= S.I.1 +
    R
    200

    2544 = S.I.1 +
    12
    200

    2544 = S.I.
    212
    200

    S.I. =
    2544 × 200
    = ₹ 2400
    212



  1. There is 100% increase to an amount in 8 years, at simple interest. Find the compound interest of ₹ 8000 after 2 years at the same rate of interest.









  1. View Hint View Answer Discuss in Forum

    Let S.I. = ₹ 100, & Principal = ₹ 100

    ∴  Rate =
    S.I. × 100
    Principal × Time

    Rate =
    100 × 100
    =
    25
    %
    100 × 82

    Given , Principal ( P ) = ₹ 8000 , Time = 2 years
    ∴ C.I. = P 1 +
    r
    T − 1
    100

    C.I. = 8000 1 +
    25
    2 − 1
    200

    Correct Option: D

    Let S.I. = ₹ 100, & Principal = ₹ 100

    ∴  Rate =
    S.I. × 100
    Principal × Time

    Rate =
    100 × 100
    =
    25
    %
    100 × 82

    Given , Principal ( P ) = ₹ 8000 , Time = 2 years
    ∴ C.I. = P 1 +
    r
    T − 1
    100

    C.I. = 8000 1 +
    25
    2 − 1
    200

    C.I. = 8000
    81
    − 1
    64

    C.I. =
    8000 × 17
    = ₹ 2125
    64