Compound Interest


  1. The least number of years in which a sum of money on 19% p.a. compound interest will be more than double is









  1. View Hint View Answer Discuss in Forum

    Let Principal be ₹ P ,Then
    According to question ,
    Amount ( A ) = ₹ 2P , Rate = 19% , Time = T years
    Using the given formula ,

    A = P1 +
    R
    T
    100

    ⇒ 2P = P1 +
    19
    T
    100

    Correct Option: B

    Let Principal be ₹ P ,Then
    According to question ,
    Amount ( A ) = ₹ 2P , Rate = 19% , Time = T years
    Using the given formula ,

    A = P1 +
    R
    T
    100

    ⇒ 2P = P1 +
    19
    T
    100

    ⇒ 2 =
    119
    T
    100

    ⇒  2 = (1.19)T
    If T = 4 years, (1.19)4 > 2
    Hence , Required time T = 4 years


  1. If the compound interest on a certain sum for 2 years at 3% per annum is ₹ 101.50, then the simple interest on the same sum at the same rate and for the same time will be









  1. View Hint View Answer Discuss in Forum

    Let the sum be P.
    Given Here , Compound Interest ( CI ) = ₹ 101.50 , Rate ( R ) = 3% , Time = 2 years
    Using the given formula ,

    C.I. = P 1 +
    r
    n − 1
    100

    101.50 = P 1 +
    3
    2 − 1
    100

    ⇒  101.50 = P
    103
    2 − 1
    100

    ⇒ 101.50 = P
    10609 - 10000
    10000

    ⇒  P = ₹
    101.50 × 10000
    609

    P = ₹
    1015000
    609

    ∴  S.I. =
    P × R × T
    100

    ⇒ S.I. =
    1015000 × 2 × 3
    = ₹ 100
    609 × 100

    We can find required answer with the help of given formula :
    Here, C.I. = Rs 101.50 , R = 3% , S.I. = ?
    C.I. = S.I.1 +
    R
    200

    Correct Option: C

    Let the sum be P.
    Given Here , Compound Interest ( CI ) = ₹ 101.50 , Rate ( R ) = 3% , Time = 2 years
    Using the given formula ,

    C.I. = P 1 +
    r
    n − 1
    100

    101.50 = P 1 +
    3
    2 − 1
    100

    ⇒  101.50 = P
    103
    2 − 1
    100

    ⇒ 101.50 = P
    10609 - 10000
    10000

    ⇒  P = ₹
    101.50 × 10000
    609

    P = ₹
    1015000
    609

    ∴  S.I. =
    P × R × T
    100

    ⇒ S.I. =
    1015000 × 2 × 3
    = ₹ 100
    609 × 100

    We can find required answer with the help of given formula :
    Here, C.I. = Rs 101.50 , R = 3% , S.I. = ?
    C.I. = S.I.1 +
    R
    200

    101.50 = S.I.1 +
    3
    200

    S.I. =
    101.50 × 200
    = ₹ 100
    203



  1. If the compound interest on a sum of money for 3 years at the rate of 5% per annum is ₹ 252.20, the simple interest on the same sum at the same rate and for the same time is









  1. View Hint View Answer Discuss in Forum

    Suppose principal be P .
    Here , Principal ( P ) = ? , Compound Interest ( CI ) = ₹ 252.20 , Rate ( R ) = 5% , Time = 3 years

    ⇒  P 1 +
    5
    3 − 1 = 252.20
    100

    ⇒  P
    21
    3 − 1 = 252.20
    20

    ⇒  P
    21 × 21 × 21 − 20 × 20 × 20
    = 252.20
    20 × 20 × 20
    ⇒  P ×
    1261
    = 252.20
    8000

    ∴  P =
    252.20 × 8000
    = 1600
    1261

    Correct Option: B

    Suppose principal be P .
    Here , Principal ( P ) = ? , Compound Interest ( CI ) = ₹ 252.20 , Rate ( R ) = 5% , Time = 3 years

    ⇒  P 1 +
    5
    3 − 1 = 252.20
    100

    ⇒  P
    21
    3 − 1 = 252.20
    20

    ⇒  P
    21 × 21 × 21 − 20 × 20 × 20
    = 252.20
    20 × 20 × 20
    ⇒  P ×
    1261
    = 252.20
    8000

    ∴  P =
    252.20 × 8000
    = 1600
    1261

    ∴  SI =
    P × R × T
    100

    ⇒  SI =
    1600 × 5 × 3
    = ₹ 240
    100


  1. On a certain sum of money the compound interest for 2 years is ₹ 282.15 and the simple interest for the same period of time is ₹ 270. The rate of interest per annum is









  1. View Hint View Answer Discuss in Forum

    Given that , C.I. = ₹ 282.15 , S.I. = ₹ 270 , Rate = r%
    For two years ,

    C.I. = S.I.1 +
    r
    200

    ⇒  282.15= 2701 +
    r
    100

    ⇒ 1 +
    r
    =
    282.15
    200270

    ⇒ 
    r
    =
    282.15
    − 1
    200270

    ⇒ 
    r
    =
    282.15 - 270
    200270

    Correct Option: C

    Given that , C.I. = ₹ 282.15 , S.I. = ₹ 270 , Rate = r%
    For two years ,

    C.I. = S.I.1 +
    r
    200

    ⇒  282.15= 2701 +
    r
    100

    ⇒ 1 +
    r
    =
    282.15
    200270

    ⇒ 
    r
    =
    282.15
    − 1
    200270

    ⇒ 
    r
    =
    282.15 - 270
    200270

    ⇒ 
    r
    =
    12.15
    200270

    ⇒  r =
    12.15 × 200
    = 9%
    270



  1. If the compound interest on a sum for 2 years at 12
    1
    % per annum
    2
    is ₹ 510, the simple interest on the same sum at the same rate for the same period of time is :









  1. View Hint View Answer Discuss in Forum

    Here , Principal ( P ) = ? , Compound Interest ( CI ) = ₹ 510 , Rate ( R ) = ( 25 / 2 )% , Time = 2 years

    C.I. = P 1 +
    R
    T − 1
    100

    ⇒  510 = P 1 +
    25
    2 − 1
    200

    ⇒  510 = P 1 +
    1
    2 − 1
    8

    ⇒ 510 = P
    81
    − 1
    64

    ⇒ 510 = P
    81 - 64
    64

    ⇒  P =
    510 × 64
    = ₹ 1920
    17

    ∴  S.I. =
    P × R × T
    100

    ∴   S.I. =
    1920 × 2 × 25
    = ₹ 480
    100 × 2

    Second Method to solve this question :
    Here, C.I. = ₹ 510 , R = 12
    1
    %, S.I. = ?
    2

    With the help of given formula ,
    C.I. = S.I.1 +
    R
    200

    510 = S.I.1 +
    25
    400

    Correct Option: B

    Here , Principal ( P ) = ? , Compound Interest ( CI ) = ₹ 510 , Rate ( R ) = ( 25 / 2 )% , Time = 2 years

    C.I. = P 1 +
    R
    T − 1
    100

    ⇒  510 = P 1 +
    25
    2 − 1
    200

    ⇒  510 = P 1 +
    1
    2 − 1
    8

    ⇒ 510 = P
    81
    − 1
    64

    ⇒ 510 = P
    81 - 64
    64

    ⇒  P =
    510 × 64
    = ₹ 1920
    17

    ∴  S.I. =
    P × R × T
    100

    ∴   S.I. =
    1920 × 2 × 25
    = ₹ 480
    100 × 2

    Second Method to solve this question :
    Here, C.I. = ₹ 510 , R = 12
    1
    %, S.I. = ?
    2

    With the help of given formula ,
    C.I. = S.I.1 +
    R
    200

    510 = S.I.1 +
    25
    400

    510 = S.I.
    425
    400

    S.I. =
    510 × 400
    = ₹ 480
    425