Signal and systems miscellaneous
Direction: A continuous time signal X(t) has Fourier transform
X(jω) = | 1 + ω2 |
-
Calculate y(t) = d2 x(t – 1) dt2
-
View Hint View Answer Discuss in Forum
If x(t) ← F.T.→ X(jω)
then d x(t) ←F.T.→ jω X(jω) dx and d2 x(t) ←F.T.→ (jω)2 X(jω) dt2 and d2 x(t – 1) ←F.T.→ (jω)2 X(jω) e– jω dt2 Therefore, Y(jω) = – ω2· e– jω.jω3 1 + ω2 or Y(jω) = – je– jω.ω5 1 + ω2
Hence, alternative (C) is the correct choice.Correct Option: C
If x(t) ← F.T.→ X(jω)
then d x(t) ←F.T.→ jω X(jω) dx and d2 x(t) ←F.T.→ (jω)2 X(jω) dt2 and d2 x(t – 1) ←F.T.→ (jω)2 X(jω) e– jω dt2 Therefore, Y(jω) = – ω2· e– jω.jω3 1 + ω2 or Y(jω) = – je– jω.ω5 1 + ω2
Hence, alternative (C) is the correct choice.
-
If x(t) ←F.T→ 2 sin ω = X(jω), when 1 + ω x(t) = 1, |t| < 1 0, otherwise
then the Fourier transform of signal y(t)
-
View Hint View Answer Discuss in Forum
First approach:
y(t) = x(t) * x(t)
Y(jω) = X(jω) X(jω)= 2 sin ω . 2 sin ω ω ω = 4 sin2 ω ω2
Second approach
Given, waveformslope = 2 = 1 2
If
y(t) ←F.T.→ Y(jω)
thend2 y(t) ←F.T.→ (jω)2 Y(jω) dt2
y′′(t) = δ(t + 2) – 2δ(t) + δ(t – 2)
F{y′′(t)} = ejω2 – 2 + e–jω2= 2 e2jω + e–2jω - 2 2
= 2.cos 2ω – 2
= 2(cos 2ω – 1)
= 2(1 – 2 sin2 ω – 1)
= 2(– 2 sin2 ω)
= – 4 sin2 ω
Now, (– jω)2 Y(jω) = – 4 sin2 ω
orY(jω) = 4 sin2 ω ω2
Hence, alternative (A) is the correct choice.Correct Option: B
First approach:
y(t) = x(t) * x(t)
Y(jω) = X(jω) X(jω)= 2 sin ω . 2 sin ω ω ω = 4 sin2 ω ω2
Second approach
Given, waveformslope = 2 = 1 2
If
y(t) ←F.T.→ Y(jω)
thend2 y(t) ←F.T.→ (jω)2 Y(jω) dt2
y′′(t) = δ(t + 2) – 2δ(t) + δ(t – 2)
F{y′′(t)} = ejω2 – 2 + e–jω2= 2 e2jω + e–2jω - 2 2
= 2.cos 2ω – 2
= 2(cos 2ω – 1)
= 2(1 – 2 sin2 ω – 1)
= 2(– 2 sin2 ω)
= – 4 sin2 ω
Now, (– jω)2 Y(jω) = – 4 sin2 ω
orY(jω) = 4 sin2 ω ω2
Hence, alternative (A) is the correct choice.
- In case of man-made noise—
-
View Hint View Answer Discuss in Forum
NA
Correct Option: C
NA
- Mean of X if
fx(x) = 3(1 – x)2; for 0 ≤ x ≤ 1 0; otherwise
-
View Hint View Answer Discuss in Forum
μx = E[X] = ∞ xfx(x)dx – ∞ = 1 x.3(1 – x) 2dx 0 = 3 1 (x – 2x2 + x3)dx 0 = 3 x2 - 2x3 + x4 1 2 3 4 0 = 3 1 - 2 + 1 2 3 4 = 3 6 - 8 + 3 = 1 12 4
Correct Option: C
μx = E[X] = ∞ xfx(x)dx – ∞ = 1 x.3(1 – x) 2dx 0 = 3 1 (x – 2x2 + x3)dx 0 = 3 x2 - 2x3 + x4 1 2 3 4 0 = 3 1 - 2 + 1 2 3 4 = 3 6 - 8 + 3 = 1 12 4
- Variance of X if
fx(x) = 3(1 – x)2; for 0 ≤ x ≤ 1 0; otherwise
-
View Hint View Answer Discuss in Forum
Variance, σ2 x = E[x2] – (μx)2
E[x2] = 3 1 x2 (1 – x)2dx a = 3 1 (x2 – 2x3 + x4)dx a E[x2] = 3 x3 - 2x4 + x5 1 3 4 5 0 = 3 1 - 1 + 1 3 2 5 = 3 10 - 15 + 6 30
= 3 × 1/30
= 1/10
Now,
σ2x = 1/10 – (1/4)2= 1 – 1 = 16 - 10 10 16 160
= 6/160
= 3/80Correct Option: A
Variance, σ2 x = E[x2] – (μx)2
E[x2] = 3 1 x2 (1 – x)2dx a = 3 1 (x2 – 2x3 + x4)dx a E[x2] = 3 x3 - 2x4 + x5 1 3 4 5 0 = 3 1 - 1 + 1 3 2 5 = 3 10 - 15 + 6 30
= 3 × 1/30
= 1/10
Now,
σ2x = 1/10 – (1/4)2= 1 – 1 = 16 - 10 10 16 160
= 6/160
= 3/80