Simplification
-
If √2 = 1.414 , the square root of √2 − 1 is nearest to √2 + 1
-
View Hint View Answer Discuss in Forum
√2 = 1.414 (Given)
Now,√2 − 1 = (√2 − 1)(√2 − 1) √2 + 1 (√2 + 1)(√2 − 1) (√2 − 1)2 = (√2 − 1)2 2 − 1
= 2 + 1 – 2√2
= 3 – 2√2
= 3 – 2 × 1.44
= 3 – 2.828
= 0.172Correct Option: A
√2 = 1.414 (Given)
Now,√2 − 1 = (√2 − 1)(√2 − 1) √2 + 1 (√2 + 1)(√2 − 1) (√2 − 1)2 = (√2 − 1)2 2 − 1
= 2 + 1 – 2√2
= 3 – 2√2
= 3 – 2 × 1.44
= 3 – 2.828
= 0.172
- √0.00004761 equals
-
View Hint View Answer Discuss in Forum
= √0.00004761 = √ 4761 108 = √ 3 × 3 × 23 × 23 104 × 104 = 69 = 0.0069 104 Correct Option: B
= √0.00004761 = √ 4761 108 = √ 3 × 3 × 23 × 23 104 × 104 = 69 = 0.0069 104
- If (102)2 = 10404 then,the value of √104.04 + √ 1.0404 + √0.010404 is equal to
-
View Hint View Answer Discuss in Forum
∵ (102)2 = 10404
⇒ √10404 = 102
√104.04 + √1.0404 + √0.010404
= 10.2 + 1.02 + 0.102
= 11.322Correct Option: D
∵ (102)2 = 10404
⇒ √10404 = 102
√104.04 + √1.0404 + √0.010404
= 10.2 + 1.02 + 0.102
= 11.322
-
Find the value of
-
View Hint View Answer Discuss in Forum
√248 + √52 + √144
= √248 + √52 + 12
= √248 + √64
= √248 + 8
= √256 = ±16Correct Option: B
√248 + √52 + √144
= √248 + √52 + 12
= √248 + √64
= √248 + 8
= √256 = ±16
-
The square root of 9.5 × 0.085 is : 0.017 × 0.019
-
View Hint View Answer Discuss in Forum
= √ 9.5 × 0.85 = √2500 = 50 0.017 × 0.019 Correct Option: C
= √ 9.5 × 0.85 = √2500 = 50 0.017 × 0.019