Simplification
- Given that √3 = 3.6 and √130 = 11.4, then the value of √1.3 + √1300 + √0.013 is equal to
-
View Hint View Answer Discuss in Forum
√13 = 3.6 and √130 = 11.4
∴ √1.3 + √1300 + √0.013= √ 130 + √13 × 100 + √ 130 100 10000 = 11.4 + 3.6 × 10 + 11.4 10 100
= 1.14 + 36 + 0.114
= 37.254Correct Option: B
√13 = 3.6 and √130 = 11.4
∴ √1.3 + √1300 + √0.013= √ 130 + √13 × 100 + √ 130 100 10000 = 11.4 + 3.6 × 10 + 11.4 10 100
= 1.14 + 36 + 0.114
= 37.254
- If √4096 = 64, then the value of √ 40.96 + √0.4096 +
√0.004096 + √ 0.00004096 up to two places of decimals is :
-
View Hint View Answer Discuss in Forum
√4096 = 64
∴ √40.96 = 6.4 and
√0.4096 = 0.64 etc.
∴ Expression
= 6.4 + 0.64 + 0.064 + 0.0064
= 7.1104Correct Option: C
√4096 = 64
∴ √40.96 = 6.4 and
√0.4096 = 0.64 etc.
∴ Expression
= 6.4 + 0.64 + 0.064 + 0.0064
= 7.1104
- The sum of the squares of 3 consecutive positive numbers is 365. The sum of the numbers is
-
View Hint View Answer Discuss in Forum
102 + 112 + 122
= 100 + 121 + 144 = 365
∴ Required sum = 10+11+12= 33Correct Option: B
102 + 112 + 122
= 100 + 121 + 144 = 365
∴ Required sum = 10+11+12= 33
-
√ 48.4 is equal to 0.289
-
View Hint View Answer Discuss in Forum
√ 48.4 = √ 48.4 0.289 2.89 = 22 = 220 = 16 16 1.7 17 17 Correct Option: C
√ 48.4 = √ 48.4 0.289 2.89 = 22 = 220 = 16 16 1.7 17 17
-
,5 correct to 3 places of decimal, isIf √3 = 1.7321, the value of √192− 1 √48 − √75 2
-
View Hint View Answer Discuss in Forum
Expression
= √192 − 1 √48 − √75 2 = √64 × 3 − 1 √16 × 3 − √25 × 3 2 = 8√3 − 1 × 4√3 − 5√3 2
= 8√3 − 2√3 − 5√3
= √3 = 1.7321Correct Option: C
Expression
= √192 − 1 √48 − √75 2 = √64 × 3 − 1 √16 × 3 − √25 × 3 2 = 8√3 − 1 × 4√3 − 5√3 2
= 8√3 − 2√3 − 5√3
= √3 = 1.7321