Simplification


  1. (1 - 1/2) (1 - 1/3) (1 -1/4) (1 -1/5) ... (1 - 1/m) = ?









  1. View Hint View Answer Discuss in Forum

    Given expression
    = (1 - 1/2) x (1 - 1/3) x (1 - 1/4) x (1 - 1/5) ...(1 - 1/m - 1) x (1 - 1/m)
    = ((2 - 1)/2) x ((3 - 1)/3) ((4 - 1)/4) ((5 - 1)/5) ...((m-1 - 1)/m - 1) x ((m - 1)/m)
    = 1/2 x 2/3 x 3/4 x 4/5 x ... x (m -2)/(m-1) x ((m - 1)/m

    Correct Option: A

    Given expression
    = (1 - 1/2) x (1 - 1/3) x (1 - 1/4) x (1 - 1/5) ...(1 - 1/m - 1) x (1 - 1/m)
    = ((2 - 1)/2) x ((3 - 1)/3) ((4 - 1)/4) ((5 - 1)/5) ...((m-1 - 1)/m - 1) x ((m - 1)/m)
    = (1/2) x (2/3) x (3/4) x (4/5) x ... x (m -2)/(m-1) x ((m - 1)/m
    use the multiplication rule of Algebra,
    = 1 x 1/m
    = 1/m


  1. If x + y = 1, then the value of (x3 + y3 + 3xy) is ?









  1. View Hint View Answer Discuss in Forum

    We know that algebraic formula,
    (x + y)3 = x3 + y3 + 3xy (x + y)
    Put the value of x + y is above equation and solve.

    Correct Option: B

    We know that algebraic formula,
    (x + y)3 = x3 + y3 + 3xy (x + y)
    put the value of x + y in given equation. [ given, x + y = 1]
    1 = x3 + y3 + 3xy X 1
    ⇒ x3 + y3 + 3xy = 1



  1. If p + q = 10 and pq = 5, then the numerical value if p/q + q/p will be ?









  1. View Hint View Answer Discuss in Forum

    p/q + q/p = (p2 + q2)/pq
    Apply the formula of algebra
    a 2+ b2 = (a + b)2 - 2ab


    p/q + q/p = ( (p + q)2 - 2pq ) / pq
    By substituting the pq and p + q values in given equation.

    Correct Option: B

    p/q + q/p = (p2 + q2)/pq
    Apply the formula of algebra
    a 2+ b2 = (a + b)2 - 2ab


    p/q + q/p = ( (p + q)2 - 2pq ) / pq
    By substituting the pq and p + q values in given equation.
    p/q + q/p = ( (p + q)2 - 2pq ) / pq
    p/q + q/p = ((10)2 - 2 x 5 ) / 5
    p/q + q/p = (100 - 10 )/ 5 = 90/5 = 18
    p/q + q/p = 90/5 = 18
    p/q + q/p = 18


  1. [ (m - n)3 + (n - r)3 + (r - m)3 ] / 6[(m - n) (n - r) (r - m)] = ?









  1. View Hint View Answer Discuss in Forum

    Let, (m - n) = a,
    (n -r) = b
    (r - m) = c,
    Now a + b + c = (m - n) + (n -r) + (r - m)
    ⇒ a + b + c = m - n + n - r + r - m
    ⇒ a + b + c = 0;

    Correct Option: A

    Let, (m - n) = a,
    (n -r) = b
    (r - m) = c,
    Now a + b + c = (m - n) + (n -r) + (r - m)
    ⇒ a + b + c = m - n + n - r + r - m
    ⇒ a + b + c = 0............................. (i)
    As we know the Algebra formula,
    a3 + b3 + c3 ? 3abc = (a+b+c) X 1/2[(a?b)2+(b?c)2+(a?c)2]
    Put the value of a + b + c from equation (i).
    ⇒ a3 + b3 + c3 ? 3abc = 0 X 1/2[(a?b)2+(b?c)2+(a?c)2]
    ⇒ a3 + b3 + c3 ? 3abc = 0
    ∴ a3 + b3 + c3 = 3abc
    ∴ Given expression in question is
    [ (m - n)3 + (n - r)3 + (r - m)3 ]/ 6(m - n) (n - r) (r - m)
    = ( a3 + b3 + c3 ) / 6abc
    = 3abc/6abc
    = 1/2



  1. If x + y = 18 and xy = 72, what is the value of x2 + y2 ?









  1. View Hint View Answer Discuss in Forum

    Given in question
    x + y = 18
    By using algebraic formula ,
    ∵ x2 + y2 = (x + y)2 - 2xy

    Correct Option: C

    Given in question,
    x + y = 18
    By using algebraic formula
    x2 + y2 = (x + y)2 - 2xy
    Put the value of x + y and xy as per given question,
    x2 + y2 = (18)2 - 2 x 72
    x2 + y2 = 324 - 144
    x2 + y2 = 180