Home » Aptitude » Trigonometry » Question
  1. If α + β =
    π
    , then the value of (1 + tanα)(1 + tanβ) is
    4

    1. 1
    2. 2
    3. –2
    4. 5
Correct Option: B

Here, α + β =
π
4

(1 + tanα)(1 + tanβ)
= 1 + tanβ + tanα + tanα tanβ
= 1 + tanα + tanβ + tanα tanβ
Also, we know that,
tan (α + β) =
tanα + tanβ
1 - tanαtanβ

tan
π
=
tanα + tanβ
41 - tanαtanβ

⇒ 1 - tanαtanβ = tanα + tanβ
⇒ (1 + tanα)(1 + tanβ)
= 1 + 1 – tanα tanβ + tanα tanβ = 2



Your comments will be displayed only after manual approval.