- 
					 If α + β = π , then the value of (1 + tanα)(1 + tanβ) is 4 
- 
                        -  1 
 
-   2 
 
-  –2 
 
- 5
 
-  1 
Correct Option: B
| Here, α + β = | ||
| 4 | 
(1 + tanα)(1 + tanβ)
= 1 + tanβ + tanα + tanα tanβ
= 1 + tanα + tanβ + tanα tanβ
Also, we know that,
| tan (α + β) = | ||
| 1 - tanαtanβ | 
| tan | = | ||
| 4 | 1 - tanαtanβ | 
⇒ 1 - tanαtanβ = tanα + tanβ
⇒ (1 + tanα)(1 + tanβ)
= 1 + 1 – tanα tanβ + tanα tanβ = 2
 
	