- 
					 If tanα = m , tanβ = 1 then α + β equal to m + n 2m + n 
- 
                        -  π/2
 
-  π/6
 
-  π/3
 
- π/4
 
-  π/2
Correct Option: D
We know that,
| tan(α + β) = | ||
| 1 - tanα . tanβ | 
⇒ tan(α + β)
| = | + | ||
| m + 1 | 2m + 1 | ||
| 1 - | |||
| (m + 1) | (2m + 1) | ||
| ∵ tan α = | ||
| m + 1 | 
| ∵ tan β = | ||
| 2m + 1 | 
| = | |||||
| (m + 1)(2m + 1) | |||||
| (m + 1)(2m + 1) | |||||
| = | = 1 | |
| 2m² + 2m + 1 | 
⇒ tan(α + β) = 1
| tan(α + β) = tan | ||
| 4 | 
| ∴ α + β = | ||
| 4 | 
 
	