Home » Aptitude » Trigonometry » Question
  1. If tan A =
    1 - cos B
    , then tan 2A is equal to
    sin B

    1. cot B
    2. tan B
    3. cos B
    4. cosec B
Correct Option: B

Here, tanA =
1 - cosB
sinB

We know that,
tan2A =
2tanA
1 - tan²A

tan2A = 2
1 - cosB
sinB
1 -
1 - cosB
²
sinB

tan2A =
2(1 - cosB)
sinB
sin²B - (1 - cosB)²
sin²B

=
2(1 - cosB)sinB
[∵ sin²θ = 1 - cos²θ]
1 - cos²B - (1 - cosB)²

=
2(1 - cosB)sinB
(1 - cosB)[1 + cosB - 1 + cosB]

=
2sinB
2cosB

= tan B.



Your comments will be displayed only after manual approval.