-
An isosceles triangle ABC is rightangled at B.D is a point inside the triangle ABC. P and Q are the feet of the perpendiculars drawn from D on the side AB and AC respectively of ∆ ABC. If AP = a cm, AQ = b cm and ∠BAD = 15°, sin 75°=
-
-
2b √3a -
a 2b -
√3a 2b -
2a √3b
-
Correct Option: C
As per the given in question , we draw a figure of an isosceles triangle ABC
From ∆ AQD,
sin 60° = | |
AD |
⇒ | = | ||
2 | AD |
⇒ AD = | |
√3 |
From ∆ APD,
sin 75° = | = | = | |||
AD | 2b | ||||
√3 |