- 
					 The angle between the external bisectors of two angles of a triangle is 60°. Then the third angle of the triangle is
 
- 
                        -  40° 
 
-  50° 
 
-  60° 
 
- 80°
 
-  40° 
Correct Option: C
According to question , we draw a figure of a external bisector triangle ABC 
Given , ∠BOC = 60°
∠ABC + ∠CBP = 180° 
⇒ ∠B + 2 ∠1 = 180° 
⇒ 2∠1 = 180° – ∠B
| ⇒ ∠1 = 90° – | ∠B ........( 1 ) | |
| 2 | 
∠B Again, ∠ACB + ∠QCB = 180°
| ⇒ ∠2 = 90° – | ∠C ...........( 2 ) | |
| 2 | 
In ∆ BOC,
∠1 + ∠2 +∠BOC = 180°
| ⇒ 90° - | ∠B + 90° - | ∠C + ∠BOC = 180° { ∴ Using ( 1) and ( 2 ) } | ||
| 2 | 2 | 
| ⇒ ∠BOC = | (∠B + ∠C) | |
| 2 | 
| ⇒ ∠BOC = | (180° - ∠A) | |
| 2 | 
| ⇒ ∠BOC = 90° – | ∠A | |
| 2 | 
| ⇒ 60° = 90° – | ∠A | |
| 2 | 
∴ ∠A = 60°
 
	