-
The angle between the external bisectors of two angles of a triangle is 60°. Then the third angle of the triangle is
-
- 40°
- 50°
- 60°
- 80°
- 40°
Correct Option: C
According to question , we draw a figure of a external bisector triangle ABC
Given , ∠BOC = 60°
∠ABC + ∠CBP = 180°
⇒ ∠B + 2 ∠1 = 180°
⇒ 2∠1 = 180° – ∠B
⇒ ∠1 = 90° – | ∠B ........( 1 ) | |
2 |
∠B Again, ∠ACB + ∠QCB = 180°
⇒ ∠2 = 90° – | ∠C ...........( 2 ) | |
2 |
In ∆ BOC,
∠1 + ∠2 +∠BOC = 180°
⇒ 90° - | ∠B + 90° - | ∠C + ∠BOC = 180° { ∴ Using ( 1) and ( 2 ) } | ||
2 | 2 |
⇒ ∠BOC = | (∠B + ∠C) | |
2 |
⇒ ∠BOC = | (180° - ∠A) | |
2 |
⇒ ∠BOC = 90° – | ∠A | |
2 |
⇒ 60° = 90° – | ∠A | |
2 |
∴ ∠A = 60°