-
Internal bisectors of ∠B and ∠C of ABC intersect at O. If ∠BOC = 102°, then the value of ∠BAC is
-
- 12°
- 24°
- 48°
- 60°
- 12°
Correct Option: B
As per the given in question , we draw a figure of a triangle ABC and the internal bisectors of ∠B and ∠C intersect at O
Here , ∠BOC = 102°
In ∆ABC ,
∠A + ∠B + ∠C = 180°
⇒ | + | = 90° - | .........( 1 ) | |||
2 | 2 | 2 |
In ∆ BOC,
∠BOC + | + | = 180° | ||
2 | 2 |
⇒ 102° + 90° – | = 180° { ∴ Using ( 1 ) } | |
2 |
⇒ | = 102° + 90° - 180° = 12° | |
2 |
∴ ∠A = 24°