- 
					 Find the value of cot π - tan π - 2tan π 32 32 16 
- 
                        -  4cot π 8 
 
-  0
 
-  2cot π 8 
 
-  cot π 8 
 
-  
Correct Option: A
| cot | - tan | - 2tan | ||||
| 32 | 32 | 16 | 
| = | - | - 2tan | ||||
| sin(π / 32) | cos(π / 32) | 16 | 
| = | - 2tan | |||
| sin(π / 32) × cos(π / 32) | 16 | 
| = | - 2tan | |||
| 2sin(π / 32).cos(π / 32) | 16 | 
{ ∴ cos2θ - sin2θ = cos2θ }
| = | - 2tan | |||
| sin(π / 16) | 16 | 
{∴ sin 2θ = 2sinθ . cosθ }
| = 2 |  | - |  | |||
| sin(π / 16) | cos(π / 16) | 
| = 2 |  |  | ||
| sin(π / 16) . cos(π / 16) | 
| = | = 4cot | |||
| sin(π / 8) | 8 | 
 
	