Correct Option: D
                                  (a2 - 1)cot2φ + ( 1 - b2 )cot2 θ
| = (a2 - 1) | cos2φ | + ( 1 - b2 ) | cos2θ |  | 
| sin2φ | sin2θ | 
| = | (a2 - 1)cos2φ.sin2θ + ( 1 - b2 )cos2θ.sin2φ |  | 
| sin2φ.sin2θ | 
| = | a2cos2φ.sin2θ - cos2φ.sin2θ + cos2θ.sin2φ - b2cos2θ.sin2φ |  | 
| sin2φ.sin2θ | 
| = | sin2θ.sin2θ - cos2φ.sin2θ + cos2θ.sin2φ - cos2θ.cos2θ |  | 
| sin2φ.sin2θ | 
[ ∵ sinθ = bcosφ , cosθ = bsinφ ]
| = | sin4θ - cos4θ - cos2φ.sin2θ + cos2θ.sin2φ |  | 
| sin2φ.sin2θ | 
| = | (sin2θ - cos2θ)(sin2θ + cos2θ) - cos2φ.sin2θ + cos2θ.sin2φ |  | 
| sin2φ.sin2θ | 
| = | sin2θ - cos2φ.sin2θ - cos2θ + cos2θ.sin2φ |  | 
| sin2φ.sin2θ | 
| = | sin2θ( 1 - cos2φ ) - cos2θ( 1 - sin2φ ) |  | 
| sin2φ.sin2θ | 
| = | sin2θ.sin2φ - cos2θ.cos2φ |  | 
| sin2φ.sin2θ | 
| = 1 - | cos2θ.cos2φ | = 1 - | b2 | 
| sin2φ.sin2θ | a2 | 
| Required answer = | a2 - b2 |  | 
| a2 |