Home » Aptitude » Trigonometry » Question
  1. If secθ + tanθ = √2, find the value of sinθ.
    1. 1
      2

    2. 1
      4

    3. 1
      2

    4. 1
      3
Correct Option: D

secθ + tanθ = √2 ....(i)
∵ sec²θ – tan²θ = 1
⇒ (secθ + tanθ) (secθ – tanθ)= 1
⇒ secθ – tanθ = 1/√2 ....(ii)
On adding (i) and (ii),

2secθ = √2 +
1
2

⇒ secθ =
3
2√2

On subtracting equation (ii) from (i),
2tanθ = √2 -
1
=
1
22

⇒ tanθ =
1
2√2

∴ sinθ =
1
=
tanθ =
2√2
1
secθ
3
3
2√2



Your comments will be displayed only after manual approval.