-
If secθ + tanθ = √2, find the value of sinθ.
-
-
1 2
-
1 4
-
1 √2
-
1 3
-
Correct Option: D
secθ + tanθ = √2 ....(i)
∵ sec²θ – tan²θ = 1
⇒ (secθ + tanθ) (secθ – tanθ)= 1
⇒ secθ – tanθ = 1/√2 ....(ii)
On adding (i) and (ii),
2secθ = √2 + | ||
√2 |
⇒ secθ = | ||
2√2 |
On subtracting equation (ii) from (i),
2tanθ = √2 - | = | ||
√2 | √2 |
⇒ tanθ = | ||
2√2 |
∴ sinθ = | = | |||
tanθ | = | |||
secθ | 3 | |||
2√2 |