Home » Aptitude » Plane Geometry » Question
  1. In ∆ABC, ∠C is an obtuse angle. The bisectors of the exterior angles at A and B meet BC and AC produced at D and E respectively. If AB = AD = BE, then ∠ACB =
    1. 105°
    2. 108°
    3. 110°
    4. 135°
Correct Option: B

As per the given in question , we draw a figure of triangle ABC

∠DAC =
1
(180° - A) = 90° –
∠ A
22

In ∆ADB,
∠DAB + ∠ADB + ∠DBA = 180°
⇒90° – ∠
A
+ ∠A + 2 ∠B = 180°
2

[∵ AD = AB ⇒ ∠ADB = ∠DBA = ∠B]
⇒90° + ∠
A
+ 2 ∠B = 180°
2

⇒ ∠A + 4∠B = 180° ....(i)
In ∆ABE,
AB = BE
∴ ∠BAE = ∠AEB
∴ ∠ABE + ∠BAE + ∠BEA = 180°
⇒90° -
∠B
+ ∠B + 2∠A = 180°
2

⇒90° +
∠B
+ 2 ∠A = 180°
2

⇒ ∠B + 4∠A = 180° ....(ii)
From equations (i) and (ii),
∠A + 4∠B = 4∠A + ∠B
⇒ 3∠A = 3∠B
⇒ ∠A = ∠B
∴ ∠A + 4∠B = 180°
⇒ 5∠B = 180°
⇒ ∠B =
180
= 36° = ∠A
5

∴ ∠ACB = 180° – 36° – 36°
∠ACB = 180° – 72° = 108°



Your comments will be displayed only after manual approval.