- 
					 In a ∆ ABC, the medians AD, BE and CF meet at G, then which of the following is true?
- 
                        -  AD + BE + CF >1/2 (AB + BC + AC) 
 
-  2(AD + BE + CF) > (AB + BC + AC)
 
-  3 (AD + BE + CF) > 4(AB + BC + AC) 
 
- AB + BC + AC > AD+BE + CF
 
-  AD + BE + CF >1/2 (AB + BC + AC) 
Correct Option: D
Firstly , We draw a figure of triangle ABC whose the medians AD, BE and CF meet at G , 
In any triangle the sum of the squares of any two sides is equal to twice the square of half of the third side together with twice the square of the median bisecting it.
∴ AB² + AC² = 2(AD² + BD²)
⇒ AB² + AC² = 2(AD²  + BC²/4)
⇒ 2(AB² + AC²) = 4 AD² + BC² 
Similarly, 
2(AB² + BC²) = 4 BE² + AC² 
2(AC² + BC²) = 4 CF² + AB² 
On adding all three, we get
4(AB² + BC² + AC²) = 4(AD² + BE² + CF²) + BC² + AC² + AB²
⇒ 3(AB² + BC² + AC²) = 4(AD² + BE² + CF²) 
Again, 
AB + AC > 2AD 
AB + BC > 2BE 
BC + AC > 2CF 
On adding , we get 
∴ 2(AB + BC + AC) > 2(AD + BE + CF) 
⇒ AB + BC + AC > AD + BE + CF
 
	