Home » Aptitude » Plane Geometry » Question
  1. BL and CM are medians of DABC right-angled at A and BC = 5 cm. If BL = 3√5/2 cm, then the length of CM is
    1. 2√5cm
    2. 5√2cm
    3. 10√2cm
    4. 4√5cm
Correct Option: A

According to question , we draw a figure right-angled triangle BAC

Since BL is the Median AL = LC = x (say). Since CM is the Median, BM = MA = y (say)
AB² + AC² = 25 ...(i)

3√5
² = (2y)² + x²
2

9 × 5
= 4y² + x²
4

⇒ 4y² =
45
- x² ...(ii)
4

In ∆ ABC, BC² = AB² + AC²
⇒ 25 = (2y)² + (2x)²
25 = 4y² + 4x²
⇒ 25 =
45
- x² + 4y²
4

3x² =
55
⇒ x² =
55
412

Put in (ii) ⇒ 4y² =
45
-
55
412

⇒ 4y² =
135 - 55
12

⇒ 4y² =
80
⇒ y² =
80
=
5
1212 × 43

Now , CM = √y² + 4x²
CM =
5
+ 4
55
312

CM =
5
+
55
33

CM =
60
3

CM = √20 = 2 √5cm.



Your comments will be displayed only after manual approval.