-
The medians CD and BE of a triangle ABC intersect each other at O. The ratio ∆ ODE : ∆ ABC is equal to
-
- 12 : 1
- 4 : 3
- 3 : 4
- 1 : 12
- 12 : 1
Correct Option: D
On the basis of question we draw a figure of triangle ABC in which the medians CD and BE intersect each other at O ,
In ∆ ADE and ∆ ABC,
∠ADE = ∠ABC
∠AED = ∠ACB
∴ ∆ AED ~ ∆ ABC
∴ | = | ||
AB | BC |
⇒ | = 1 | |
DB |
⇒ | + 1 = 2 | |
AD |
⇒ | = 2 | |
AD |
⇒ | = 2 ⇒ | = | |||
AD | AB | 2 |
⇒ | = | ||
BC | 2 |
∴ | = | ² | = | |||||
∆ BOC | 2 | 4 |
∴ | = | = 1 : 12 | ||
∆ ABC | 12 |
[∵ 3 ∆ BOC = ∆ ABC]