- 
					 The medians CD and BE of a triangle ABC intersect each other at O. The ratio ∆ ODE : ∆ ABC is equal to
- 
                        -  12 : 1 
 
-  4 : 3 
 
-  3 : 4 
 
- 1 : 12
 
-  12 : 1 
Correct Option: D
On the basis of question we draw a figure of triangle ABC in which the medians CD and BE  intersect each other at O ,
In ∆ ADE and ∆ ABC, 
∠ADE = ∠ABC 
∠AED = ∠ACB 
∴ ∆ AED ~ ∆ ABC
| ∴ | = | ||
| AB | BC | 
| ⇒ | = 1 | |
| DB | 
| ⇒ | + 1 = 2 | |
| AD | 
| ⇒ | = 2 | |
| AD | 
| ⇒ | = 2 ⇒ | = | |||
| AD | AB | 2 | 
| ⇒ | = | ||
| BC | 2 | 
| ∴ | = |  |  | ² | = | |||
| ∆ BOC | 2 | 4 | 
| ∴ | = | = 1 : 12 | ||
| ∆ ABC | 12 | 
[∵ 3 ∆ BOC = ∆ ABC]
 
	