-
PQ is a chord of length 8 cm, of a circle with centre O and of radius 5 cm. The tangents at P and Q intersect at a point T. The length of TP is
-
-
20 cm. 3 -
21 cm. 4 -
10 cm. 3 -
15 cm. 4
-
Correct Option: A
As per the given in question , we draw a figure of a circle with centre O,
OT is the perpendicular bisector of chord PQ.
Let TR = y
∴ PR = QR = 4 cm
In right angle ∆ ORP,
OP² = OR² + PR²
⇒ OR² = OP² – PR² = 5² – 4² = 9
⇒ OR = 3 cm
In right angled ∆ PRT and ∆ OPT,
TP² = TR² + PR² and OT² = TP² + OP²
⇒ OT² = TR² + PR² + OP²
⇒ (y + 3)² = y² + 16 + 25
⇒ 6y = 32 ⇒ y = | |
3 |
∴ TR = | |
3 |
∴ TP² = TR² + PR² = | ² | + 16 | |||
3 |
TP² = | + 16 = | ||
9 | 9 |
∴ TP = | cm. | |
3 |