-
If the internal bisectors of angles ∠ABC and ∠ACB of ∆ABC intersect at point O, then ∠BOC = ?
-
-
90° - ∠A 2 -
90° + ∠A 2 -
180° - ∠A 2 - 90° – ∠A
-
Correct Option: B
As per the given in question , we draw a figure a ∆ ABC and the internal bisectors of angles ∠ABC and ∠ACB intersect at point O
In ∆ BOC,
We know that sum of all three angles is 180°
∠1 + ∠2 + ∠BOC = 180° ...(i)
In ∆ ABC,
∠A + ∠B + ∠C = 180°
⇒ ∠A + 2 ∠1 + 2 ∠2 = 180°
⇒ | + ∠1 + ∠2 = 90° | |
2 |
⇒ ∠1 + ∠2 = 90° - | |
2 |
From equation (i) ,
90° – | + ∠BOC = 180° | |
2 |
⇒ ∠BOC = 180° – 90° + | = 90° + | ||
2 | 2 |