- 
					 In any triangle PQR, PS is the internal bisector of∠QPR and PT ⊥ QR then ∠TPS = ?
- 
                        - ∠Q – ∠R
-  1 (∠Q + ∠R) 2 
-  1 (∠Q – ∠R) 2 
- ∠Q + ∠R
 
Correct Option: C
On the basis of given question , we draw a figure of triangle PQR in which PS is the internal bisector of∠QPR and PT ⊥ QR
PS, is bisector of ∠QPR. 
∴ ∠QPS = ∠SPR .....(i) 
In ∆ 
PQT, ∠PQT + ∠PTQ + ∠QPT = 180° 
⇒ ∠PQT + 90° + ∠QPT = 180° 
⇒ ∠PQT + ∠QPT = 90° 
⇒ ∠PQT = 90° – ∠QPT 
⇒ ∠Q = 90° – ∠QPT .....(ii) 
In ∆ PTR, 
∠PRT + ∠TPR + ∠PTR = 180° 
⇒ ∠PRT + ∠TPR  + 90° = 180°
⇒ ∠PRT + ∠TPR = 90° 
⇒ ∠PRT = 90° – ∠TPR ....(iii) 
By equation (ii) – (iii), 
∠Q – ∠R = (90° – ∠QPT) – (90° – ∠TPR)
⇒ ∠Q – ∠R = ∠TPR – ∠QPT 
⇒ ∠Q – ∠R = (∠TPS + ∠SPR) – (∠QPS – ∠TPS) 
⇒ ∠Q – ∠R = 2 ∠TPS
| ⇒ ∠TPS = | (∠Q - ∠R) | |
| 2 | 
 
	