-
In any triangle PQR, PS is the internal bisector of∠QPR and PT ⊥ QR then ∠TPS = ?
-
- ∠Q – ∠R
-
1 (∠Q + ∠R) 2 -
1 (∠Q – ∠R) 2 - ∠Q + ∠R
Correct Option: C
On the basis of given question , we draw a figure of triangle PQR in which PS is the internal bisector of∠QPR and PT ⊥ QR
PS, is bisector of ∠QPR.
∴ ∠QPS = ∠SPR .....(i)
In ∆
PQT, ∠PQT + ∠PTQ + ∠QPT = 180°
⇒ ∠PQT + 90° + ∠QPT = 180°
⇒ ∠PQT + ∠QPT = 90°
⇒ ∠PQT = 90° – ∠QPT
⇒ ∠Q = 90° – ∠QPT .....(ii)
In ∆ PTR,
∠PRT + ∠TPR + ∠PTR = 180°
⇒ ∠PRT + ∠TPR + 90° = 180°
⇒ ∠PRT + ∠TPR = 90°
⇒ ∠PRT = 90° – ∠TPR ....(iii)
By equation (ii) – (iii),
∠Q – ∠R = (90° – ∠QPT) – (90° – ∠TPR)
⇒ ∠Q – ∠R = ∠TPR – ∠QPT
⇒ ∠Q – ∠R = (∠TPS + ∠SPR) – (∠QPS – ∠TPS)
⇒ ∠Q – ∠R = 2 ∠TPS
⇒ ∠TPS = | (∠Q - ∠R) | |
2 |