- 
					 If sec θ – tan θ = 1 , the value of sec θ . tan θ is √3 
- 
                        -  1 3 
-  1 √3 
-  4 √3 
-  1 √3 
 
-  
Correct Option: A
| secθ – tanθ = | ....(i) | √3 | 
∵ sec²θ – tan²θ = 1
⇒ (secθ + tanθ) (secθ – tanθ) = 1
⇒ secθ + tanθ = 3 ....(ii)
On adding equations (i) and (ii)
| 2secθ = √3 + | √3 | 
| = | = | √3 | √3 | 
| ⇒ secθ = | √3 | 
Again, by equation (ii) – (i),
| 2 tanθ = √3 - | √3 | 
| = | = | √3 | √3 | 
| ⇒ tanθ = | √3 | 
∴ secθ . tanθ
| = | × | = | √3 | √3 | 3 | 
 
	