-
The angle of elevation of the top of a pillar from the foot and the top of a building 20 m high, are 60° and 30° respectively. The height of the pillar is
-
- 10 m
- 10 √3
- 60 m
- 30 m
Correct Option: D
Let, AB = height of pole = h metre
CD = height of building = 20 metre = BE
∠ADB = 60° ; ∠ACE = 30°
Let, AE = x metre ; BD = EC = y metre
In ∆ ABD,
tan 60° = | ⇒ √3 = | BD | y |
⇒ x + 20 = √3 y .... (i)
In ∆ AEC
tan 30° = | EC |
⇒ | = | ⇒ y = √3 x ....(ii) | √3 | y |
From equation (i),
x + 20 = √3 × √3x
⇒ 3x – x = 20
⇒ 2x = 20
⇒ x = | = 10 metre | 2 |
∴ Height of pole
= (20 + 10) metre
= 30 metre