Logarithm


  1. If A = log27625 + 7log1113 and B = log9125 + 13log107 then which of the following is true ?









  1. View Hint View Answer Discuss in Forum

    A = log27625 + 7log1113
    = log3354 + 7 log1113
    = 4/3 log3 5 + 7 log1113
    B = log9125 + 13 log117 = log32 53 + 13 log117
    = 3/2 log3 5 +13 log11 7
    Let log3 5 = x and by the above rule
    7 log11 13 = 13 log11 7
    Therefore, A = 4/3 x + 13 log11 7
    and B = 3/2 x + 13 log11 17
    clearly, A < B hence (B) is the correct answer.

    Correct Option: B

    A = log27625 + 7log1113
    = log3354 + 7 log1113
    = 4/3 log3 5 + 7 log1113
    B = log9125 + 13 log117 = log32 53 + 13 log117
    = 3/2 log3 5 +13 log11 7
    Let log3 5 = x and by the above rule
    7 log11 13 = 13 log11 7
    Therefore, A = 4/3 x + 13 log11 7
    and B = 3/2 x + 13 log11 17
    clearly, A < B hence (B) is the correct answer.


  1. If log1227 =a then log616 is ?









  1. View Hint View Answer Discuss in Forum

    ∵ log1227 = a
    ⇒ log 27 / log 12 = a
    ⇒ a log 12 = log 33
    ⇒ a log ( 3 x 4 ) = 3 log 3
    ⇒ a[log 3 + log 4] = 3 log 3
    ⇒ a log 4 + a log 3 = 3 log 3
    ⇒ a log 22 = ( 3 - a) log 3
    ⇒ 2a log 2 = (3 - a) log 3
    ∴ log 2 / log 3 = (3 - a) / 2a
    Now log616 = log16 / log 6 = log 24 / log (2 x 3) = 4 log 2 / ( log 2 + log 3)
    = [4 (log 2 / log 3)] / [(log 2 / log 3) + 1]
    = 4[(3 - a) / 2a] / [{(3 - a) / 2a } + 1]
    = 4(3 - a) / (3 + a)

    Correct Option: A

    ∵ log1227 = a
    ⇒ log 27 / log 12 = a
    ⇒ a log 12 = log 33
    ⇒ a log ( 3 x 4 ) = 3 log 3
    ⇒ a[log 3 + log 4] = 3 log 3
    ⇒ a log 4 + a log 3 = 3 log 3
    ⇒ a log 22 = ( 3 - a) log 3
    ⇒ 2a log 2 = (3 - a) log 3
    ∴ log 2 / log 3 = (3 - a) / 2a
    Now log616 = log16 / log 6 = log 24 / log (2 x 3) = 4 log 2 / ( log 2 + log 3)
    = [4 (log 2 / log 3)] / [(log 2 / log 3) + 1]
    = 4[(3 - a) / 2a] / [{(3 - a) / 2a } + 1]
    = 4(3 - a) / (3 + a)



  1. If logx4 = 0.4 then the value of x is ?









  1. View Hint View Answer Discuss in Forum

    logx4 = log 4 / log x = 2/5
    ⇒ 2log2 / log x = 2/5
    ⇒ log x =5log 2 = log 25
    ⇒ log x = log 32

    Correct Option: D

    logx4 = log 4 / log x = 2/5
    ⇒ 2log2 / log x = 2/5
    ⇒ log x =5log 2 = log 25
    ⇒ log x = log 32
    ∴ x = 32


  1. If logxy = 100 and log2x = 10 then the value of y is ?









  1. View Hint View Answer Discuss in Forum

    logxy =100, log2x = 10
    ⇒ log y / log x = 100 and log x / log 2 = 10

    Correct Option: B

    logxy =100, log2x = 10
    ⇒ log y / log x = 100 and log x / log 2 = 10
    ⇒ log y / log 2 = 100 x 10 = 1000
    ⇒ log2y = 1000
    ∴ y = 21000



  1. If ax = b, by = c, cz = a, then the value of xyz is ?









  1. View Hint View Answer Discuss in Forum

    ∵ ax = b
    ⇒ loga b = x

    ∵ by = c
    ⇒ logb c = y

    ∵ cz = a
    ⇒ logc a = z

    Correct Option: B

    ∵ ax = b
    ⇒ loga b = x

    ∵ by = c
    ⇒ logb c = y

    ∵ cz = a
    ⇒ logc a = z

    ∴ xyz = logab x logbc x logca = 1