Logarithm
- If A = log27625 + 7log1113 and B = log9125 + 13log107 then which of the following is true ?
-
View Hint View Answer Discuss in Forum
A = log27625 + 7log1113
= log3354 + 7 log1113
= 4/3 log3 5 + 7 log1113
B = log9125 + 13 log117 = log32 53 + 13 log117
= 3/2 log3 5 +13 log11 7
Let log3 5 = x and by the above rule
7 log11 13 = 13 log11 7
Therefore, A = 4/3 x + 13 log11 7
and B = 3/2 x + 13 log11 17
clearly, A < B hence (B) is the correct answer.Correct Option: B
A = log27625 + 7log1113
= log3354 + 7 log1113
= 4/3 log3 5 + 7 log1113
B = log9125 + 13 log117 = log32 53 + 13 log117
= 3/2 log3 5 +13 log11 7
Let log3 5 = x and by the above rule
7 log11 13 = 13 log11 7
Therefore, A = 4/3 x + 13 log11 7
and B = 3/2 x + 13 log11 17
clearly, A < B hence (B) is the correct answer.
- If log1227 =a then log616 is ?
-
View Hint View Answer Discuss in Forum
∵ log1227 = a
⇒ log 27 / log 12 = a
⇒ a log 12 = log 33
⇒ a log ( 3 x 4 ) = 3 log 3
⇒ a[log 3 + log 4] = 3 log 3
⇒ a log 4 + a log 3 = 3 log 3
⇒ a log 22 = ( 3 - a) log 3
⇒ 2a log 2 = (3 - a) log 3
∴ log 2 / log 3 = (3 - a) / 2a
Now log616 = log16 / log 6 = log 24 / log (2 x 3) = 4 log 2 / ( log 2 + log 3)
= [4 (log 2 / log 3)] / [(log 2 / log 3) + 1]
= 4[(3 - a) / 2a] / [{(3 - a) / 2a } + 1]
= 4(3 - a) / (3 + a)Correct Option: A
∵ log1227 = a
⇒ log 27 / log 12 = a
⇒ a log 12 = log 33
⇒ a log ( 3 x 4 ) = 3 log 3
⇒ a[log 3 + log 4] = 3 log 3
⇒ a log 4 + a log 3 = 3 log 3
⇒ a log 22 = ( 3 - a) log 3
⇒ 2a log 2 = (3 - a) log 3
∴ log 2 / log 3 = (3 - a) / 2a
Now log616 = log16 / log 6 = log 24 / log (2 x 3) = 4 log 2 / ( log 2 + log 3)
= [4 (log 2 / log 3)] / [(log 2 / log 3) + 1]
= 4[(3 - a) / 2a] / [{(3 - a) / 2a } + 1]
= 4(3 - a) / (3 + a)
- If logx4 = 0.4 then the value of x is ?
-
View Hint View Answer Discuss in Forum
logx4 = log 4 / log x = 2/5
⇒ 2log2 / log x = 2/5
⇒ log x =5log 2 = log 25
⇒ log x = log 32Correct Option: D
logx4 = log 4 / log x = 2/5
⇒ 2log2 / log x = 2/5
⇒ log x =5log 2 = log 25
⇒ log x = log 32
∴ x = 32
- If logxy = 100 and log2x = 10 then the value of y is ?
-
View Hint View Answer Discuss in Forum
logxy =100, log2x = 10
⇒ log y / log x = 100 and log x / log 2 = 10Correct Option: B
logxy =100, log2x = 10
⇒ log y / log x = 100 and log x / log 2 = 10
⇒ log y / log 2 = 100 x 10 = 1000
⇒ log2y = 1000
∴ y = 21000
- If ax = b, by = c, cz = a, then the value of xyz is ?
-
View Hint View Answer Discuss in Forum
∵ ax = b
⇒ loga b = x
∵ by = c
⇒ logb c = y
∵ cz = a
⇒ logc a = zCorrect Option: B
∵ ax = b
⇒ loga b = x
∵ by = c
⇒ logb c = y
∵ cz = a
⇒ logc a = z
∴ xyz = logab x logbc x logca = 1