Home » Aptitude » Algebra » Question
  1. If a (2 + √3) = b (2 – √3) = 1, then the value of
    1
    +
    1
      is
    a2 + 1b2 + 1
    1. –5
    2. 1
    3. 4
    4. 9
Correct Option: B

a (2 + √3) = b (2 – √3) = 1

⇒ a =
1
=
2 - √3
=
2 - √3
= 2 - √3
2 + √3(2 + √3)(2 - √3)4 - 3

⇒ b =
1
=
2 + √3
=
2 + √3
= 2 + √3
2 - √3(2 - √3)(2 + √3)4 - 3

∴ a² + 1 = (2 – 3 )² + 1
= 4 + 3 – 4√3 + 1 = 8 – 4√3 b² + 1 = (2 + 3 )² + 1
= 4 + 3 + 4√3 + 1 = 8 + 4√3
1
+
1
a² + 1b² + 1

=
8 + 4√3 + 8 - 4√3
(8 - 4√3)(8 + 4√3)

=
16
=
16
=
16
= 1
64 - 16 × 364 - 4816



Your comments will be displayed only after manual approval.