- 
					 A tower standing on a horizontal plane subtends a certain angle at a point 160 m apart from the foot of the tower. On advancing 100 m towards it, the tower is found to subtend an angle twice as before. The height of the tower is
- 
                        - 80 m
- 100 m
- 160 m
- 200 m
 
Correct Option: A

AB = Tower = h metre
CD = 100 metre; BC = 160 metre
∠ACB = ∴  ∠ADB = 2θ
In ∆ ABC,
| tanθ = | BC | 
| ⇒ tanθ = | .............(i) | 160 | 
In ∆ ABD,
| tan2θ = | BD | 
| ⇒ tan2θ = | 60 | 
| ⇒ | = | |||
| 1 - tan2θ | 60 | 
| = | 2 × | |||||
| 160 | ||||||
| 1 - | ||||||
| 160 × 160 | ||||||
| 60 | 
| ⇒ | 1 | = | |||||
| 80 |  | 1 - |  | 60 | |||
| 160 × 160 | |||||||
| ⇒ 4 |  | 1 - |  | = 3 | 160 × 160 | 
| ⇒ | = 1 - | = | ||||
| 160 × 160 | 4 | 4 | 
⇒ h2 = 6400
⇒ h = √6400 = 80 metre
 
	