-
A tower standing on a horizontal plane subtends a certain angle at a point 160 m apart from the foot of the tower. On advancing 100 m towards it, the tower is found to subtend an angle twice as before. The height of the tower is
-
- 80 m
- 100 m
- 160 m
- 200 m
Correct Option: A
AB = Tower = h metre
CD = 100 metre; BC = 160 metre
∠ACB = ∴ ∠ADB = 2θ
In ∆ ABC,
tanθ = | BC |
⇒ tanθ = | .............(i) | 160 |
In ∆ ABD,
tan2θ = | BD |
⇒ tan2θ = | 60 |
⇒ | = | |||
1 - tan2θ | 60 |
= | 2 × | |||||
160 | ||||||
1 - | ||||||
160 × 160 |
60 |
⇒ | 1 | = | |||||
80 | ![]() | 1 - | ![]() | 60 | |||
160 × 160 |
⇒ 4 | ![]() | 1 - | ![]() | = 3 | 160 × 160 |
⇒ | = 1 - | = | ||||
160 × 160 | 4 | 4 |
⇒ h2 = 6400
⇒ h = √6400 = 80 metre