Home » Aptitude » Trigonometry » Question
  1. If tanθ =
    a
    , find the value of
    a sin³θ - b cos³θ
    .
    ba sin³θ + b cos³θ

    1. a4 - b4
      ba4 + b4
    2. a4 + b4
      ba4 - b4
    3. a³ - b³
      ba³ + b³
    4. a³ + b³
      ba³ - b³
Correct Option: A

tan θ =
a
b

Expression =
a sin³θ - b cos³θ
a sin³θ + b cos³θ

Dividing numerator and denominator by cos³θ,
= a ×
- b
a tan³θ - b
=
a tan³θ + b a ×
- b

=
a4 - b4
a4 + b4



Your comments will be displayed only after manual approval.